Abstract
In vivo measurement of the oxygen saturation levels in blood may be obtained from relative amounts of backscattered monochromatic light at two different wavelengths, as measured with a fiber-optic catheter oximeter. Because of the short mean free path length of light in blood, the backscattering can be well approximated by a previously-derived, one-wavelength transport theory solution for the half-space searchlight problem. This solution, unlike simple diffusion approximations has the advantage that the boundary condition describing illumination of a localized area of blood by a monodirectional light beam can be rigorously satisfied. Sample calculations using the solution are compared with experimental values of the reflectance of blood.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson N. M., Sekelj P. Light-absorbing and scattering properties of nonhaemolysed blood. Phys Med Biol. 1967 Apr;12(2):173–184. doi: 10.1088/0031-9155/12/2/303. [DOI] [PubMed] [Google Scholar]
- Cohen A., Longini R. L. Theoretical determination of the blood's relative oxygen saturation in vivo. Med Biol Eng. 1971 Jan;9(1):61–69. doi: 10.1007/BF02474405. [DOI] [PubMed] [Google Scholar]
- ENSON Y., BRISCOE W. A., POLANYI M. L., COURNAND A. In vivo studies with an intravascular and intracardiac reflection oximeter. J Appl Physiol. 1962 May;17:552–558. doi: 10.1152/jappl.1962.17.3.552. [DOI] [PubMed] [Google Scholar]
- Johnson C. C. Optical diffusion in blood. IEEE Trans Biomed Eng. 1970 Apr;17(2):129–133. doi: 10.1109/tbme.1970.4502711. [DOI] [PubMed] [Google Scholar]
- KAPANY N. S., SILBERTRUST N. FIBRE OPTICS SPECTROPHOTOMETER FOR IN VIVO OXIMETRY. Nature. 1964 Oct 10;204:138–142. doi: 10.1038/204138a0. [DOI] [PubMed] [Google Scholar]
- LOEWINGER E., GORDON A., WEINREB A., GROSS J. ANALYSIS OF A MICROMETHOD FOR TRANSMISSION OXIMETRY OF WHOLE BLOOD. J Appl Physiol. 1964 Nov;19:1179–1184. doi: 10.1152/jappl.1964.19.6.1179. [DOI] [PubMed] [Google Scholar]
- Mook G. A., Osypka P., Sturm R. E., Wood E. H. Fibre optic reflection photometry on blood. Cardiovasc Res. 1968 Apr;2(2):199–209. doi: 10.1093/cvr/2.2.199. [DOI] [PubMed] [Google Scholar]
- TWERSKY V. Multiple scattering of waves and optical phenomena. J Opt Soc Am. 1962 Feb;52:145–171. doi: 10.1364/josa.52.000145. [DOI] [PubMed] [Google Scholar]
- Zdrojkowski R. J., Pisharoty N. R. Optical transmission and reflection by blood. IEEE Trans Biomed Eng. 1970 Apr;17(2):122–128. doi: 10.1109/tbme.1970.4502710. [DOI] [PubMed] [Google Scholar]