Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1975 Oct;251(3):589–608. doi: 10.1113/jphysiol.1975.sp011110

Initial and delayed membrane currents in crab muscle fibre under voltage-clamp conditions.

Y Mounier, G Vassort
PMCID: PMC1348405  PMID: 1185676

Abstract

Membrane currents are investigated under voltage-clamp conditions in crab muscle fibre. 2. Step depolarizations elicit an initial composite current followed by a late outward current. 3. One of the components of the initial current is inward. It is sensitive to the external calcium concentration and inhibited by manganese ions, it can be carried also by strontium ions; thus it is expected to be a calcium current. 4. In TEA solution this calcium current appears alone, it reverses when the membrane polarization is carried beyond an internal potential of +30 or +35 mV. Such a low equilibrium potential for calcium ions can be explained either by a low selectivity of the calcium channel or by a local accumulation of calcium ions. 5. Calcium conductance shows voltage- and time dependence. 6. The late outward current corresponds to a potassium current and is inhibited by TEA ions. Its activation exhibits voltage- and time dependence. 7. The activation curve of the late potassium current is shifted in a depolarizing direction by addition of manganese ions. A similar shift produced by increasing [Ca]o or decreasing [Ca]i has been described on other preparations. It is then supposed that the electrical field of the membrane is modified by the gradient of double cations.

Full text

PDF
592

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABBOTT B. C., PARNAS I. ELECTRICAL AND MECHANICAL RESPONSES IN DEEP ABDOMINAL EXTENSOR MUSCLES OF CRAYFISH AND LOBSTER. J Gen Physiol. 1965 May;48:919–931. doi: 10.1085/jgp.48.5.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ARMSTRONG C. M., BINSTOCK L. ANOMALOUS RECTIFICATION IN THE SQUID GIANT AXON INJECTED WITH TETRAETHYLAMMONIUM CHLORIDE. J Gen Physiol. 1965 May;48:859–872. doi: 10.1085/jgp.48.5.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Atwood H. L., Hoyle G., Smyth T., Jr Mechanical and electrical responses of single innervated crab-muscle fibres. J Physiol. 1965 Oct;180(3):449–482. doi: 10.1113/jphysiol.1965.sp007712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cohen M. J., Hess A. Fine structural differences in "fast" and "slow" muscle fibers of the crab. Am J Anat. 1967 Sep;121(2):285–303. doi: 10.1002/aja.1001210208. [DOI] [PubMed] [Google Scholar]
  5. D'Arrigo J. S. Possible screening of surface charges on crayfish axons by polyvalent metal ions. J Physiol. 1973 May;231(1):117–128. doi: 10.1113/jphysiol.1973.sp010223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FATT P., GINSBORG B. L. The ionic requirements for the production of action potentials in crustacean muscle fibres. J Physiol. 1958 Aug 6;142(3):516–543. doi: 10.1113/jphysiol.1958.sp006034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FATT P., KATZ B. The electrical properties of crustacean muscle fibres. J Physiol. 1953 Apr 28;120(1-2):171–204. doi: 10.1113/jphysiol.1953.sp004884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FRANKENHAEUSER B., HODGKIN A. L. The action of calcium on the electrical properties of squid axons. J Physiol. 1957 Jul 11;137(2):218–244. doi: 10.1113/jphysiol.1957.sp005808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GIRARDIER L., REUBEN J. P., BRANDT P. W., GRUNDFEST H. EVIDENCE FOR ANION-PERMSELECTIVE MEMBRANE IN CRAYFISH MUSCLE FIBERS AND ITS POSSIBLE ROLE IN EXCITATION-CONTRACTION COUPLING. J Gen Physiol. 1963 Sep;47:189–214. doi: 10.1085/jgp.47.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gainer H. The role of calcium in excitation-contraction coupling of lobster muscle. J Gen Physiol. 1968 Jul;52(1):88–110. doi: 10.1085/jgp.52.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Geduldig D., Gruener R. Voltage clamp of the Aplysia giant neurone: early sodium and calcium currents. J Physiol. 1970 Nov;211(1):217–244. doi: 10.1113/jphysiol.1970.sp009276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goldman L., Binstock L. Leak current rectification in Myxicola giant axons. Constant field and constant conductance components. J Gen Physiol. 1969 Dec;54(6):755–764. doi: 10.1085/jgp.54.6.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HAGIWARA S., NAKA K. I. THE INITIATION OF SPIKE POTENTIAL IN BARNACLE MUSCLE FIBERS UNDER LOW INTRACELLULAR CA++. J Gen Physiol. 1964 Sep;48:141–162. doi: 10.1085/jgp.48.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HOYLE G., SMYTH T., Jr NEUROMUSCULAR PHYSIOLOGY OF GIANT MUSCLE FIBERS OF A BARNACLE, BALANUS NUBILUS DARWIN. Comp Biochem Physiol. 1963 Dec;10:291–314. doi: 10.1016/0010-406x(63)90229-9. [DOI] [PubMed] [Google Scholar]
  15. HUXLEY A. F. Ion movements during nerve activity. Ann N Y Acad Sci. 1959 Aug 28;81:221–246. doi: 10.1111/j.1749-6632.1959.tb49311.x. [DOI] [PubMed] [Google Scholar]
  16. Hagiwara S., Fukuda J., Eaton D. C. Membrane currents carried by Ca, Sr, and Ba in barnacle muscle fiber during voltage clamp. J Gen Physiol. 1974 May;63(5):564–578. doi: 10.1085/jgp.63.5.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hagiwara S., Gruener R., Hayashi H., Sakata H., Grinnell A. D. Effect of external and internal pH changes on K and Cl conductances in the muscle fiber membrane of a giant barnacle. J Gen Physiol. 1968 Nov;52(5):773–792. doi: 10.1085/jgp.52.5.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hagiwara S., Hayashi H., Takahashi K. Calcium and potassium currents of the membrane of a barnacle muscle fibre in relation to the calcium spike. J Physiol. 1969 Nov;205(1):115–129. doi: 10.1113/jphysiol.1969.sp008955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hagiwara S., Nakajima S. Differences in Na and Ca spikes as examined by application of tetrodotoxin, procaine, and manganese ions. J Gen Physiol. 1966 Mar;49(4):793–806. doi: 10.1085/jgp.49.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hays E. A., Lang M. A., Gainer H. A re-examination of the Donnan distribution as a mechanism for membrane potentials and potassium and chloride ion distributions in crab muscle fibers. Comp Biochem Physiol. 1968 Sep;26(3):761–792. doi: 10.1016/0010-406x(68)90001-7. [DOI] [PubMed] [Google Scholar]
  21. Hencek M., Nonner W., Stämpfli R. Voltage clamp of a small muscle membrane area by means of a circular sucrose gap arrangement. Pflugers Arch. 1969;313(1):71–79. doi: 10.1007/BF00586330. [DOI] [PubMed] [Google Scholar]
  22. Ito Y., Kuriyama H., Sakamoto Y. Effects of tetraethylammonium chloride on the membrane activity of guinea-pig stomach smooth muscle. J Physiol. 1970 Dec;211(2):445–460. doi: 10.1113/jphysiol.1970.sp009286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kao C. Y. Tetrodotoxin, saxitoxin and their significance in the study of excitation phenomena. Pharmacol Rev. 1966 Jun;18(2):997–1049. [PubMed] [Google Scholar]
  24. Keynes R. D., Rojas E., Taylor R. E., Vergara J. Calcium and potassium systems of a giant barnacle muscle fibre under membrane potential control. J Physiol. 1973 Mar;229(2):409–455. doi: 10.1113/jphysiol.1973.sp010146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McGuigan J. A. Some limitations of the double sucrose gap, and its use in a study of the slow outward current in mammalian ventricular muscle. J Physiol. 1974 Aug;240(3):775–806. doi: 10.1113/jphysiol.1974.sp010634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mounier Y., Haudecoeur G., Guilbault P. Données électrophysiologiques sur la fibre musculaire de crabe (Carcinus moenas) J Physiol (Paris) 1969;61 (Suppl 2):359–360. [PubMed] [Google Scholar]
  27. Mounier Y., Vassort G. Analyse en potentiel imposé des courants membranaires de la fibre musculaire de Crabe. C R Acad Sci Hebd Seances Acad Sci D. 1973 Jan 8;276(2):173–176. [PubMed] [Google Scholar]
  28. Mounier Y., Vassort G. Evidence for a transient potassium membrane current dependent on calcium influx in crab muscle fibre. J Physiol. 1975 Oct;251(3):609–625. doi: 10.1113/jphysiol.1975.sp011111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mounier Y., Vilain J. P., Guilbault P. Influence du pH externe sur la perméabilités ionique membranaire de la fibre musculaire de crabe (Carcinus maenas. C R Seances Soc Biol Fil. 1970;164(12):2566–2570. [PubMed] [Google Scholar]
  30. Noble D., Tsien R. W. Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres. J Physiol. 1969 Jan;200(1):205–231. doi: 10.1113/jphysiol.1969.sp008689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. PORTZEHL H., CALDWELL P. C., RUEEGG J. C. THE DEPENDENCE OF CONTRACTION AND RELAXATION OF MUSCLE FIBRES FROM THE CRAB MAIA SQUINADO ON THE INTERNAL CONCENTRATION OF FREE CALCIUM IONS. Biochim Biophys Acta. 1964 May 25;79:581–591. doi: 10.1016/0926-6577(64)90224-4. [DOI] [PubMed] [Google Scholar]
  32. Reuben J. P., Brandt P. W., Garcia H., Grundfest H. Excitation-contraction coupling in crayfish. Am Zool. 1967 Aug;7(3):623–645. doi: 10.1093/icb/7.3.623. [DOI] [PubMed] [Google Scholar]
  33. Reuter H. Divalent cations as charge carriers in excitable membranes. Prog Biophys Mol Biol. 1973;26:1–43. doi: 10.1016/0079-6107(73)90016-3. [DOI] [PubMed] [Google Scholar]
  34. Rougier O., Vassort G., Stämpfli R. Voltage clamp experiments on frog atrial heart muscle fibres with the sucrose gap technique. Pflugers Arch Gesamte Physiol Menschen Tiere. 1968;301(2):91–108. doi: 10.1007/BF00362729. [DOI] [PubMed] [Google Scholar]
  35. WERMAN R., GRUNDFEST H. Graded and all-or-none electrogenesis in arthropod muscle. II. The effects of alkali-earth and onium ions on lobster muscle fibers. J Gen Physiol. 1961 May;44:997–1027. doi: 10.1085/jgp.44.5.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Winegrad S. Intracellular calcium movements of frog skeletal muscle during recovery from tetanus. J Gen Physiol. 1968 Jan;51(1):65–83. doi: 10.1085/jgp.51.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zacharová D., Zachar J. The effect of external calcium ions on the excitation-contraction coupling in single muscle fibres of the crayfish. Physiol Bohemoslov. 1967;16(3):191–207. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES