Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1970 Jan;206(1):109–116. doi: 10.1113/jphysiol.1970.sp009000

Rod-cone independence for sensitizing interaction in the human retina

Gerald Westheimer
PMCID: PMC1348589  PMID: 5498450

Abstract

1. Illumination of a retinal area adjoining a tested area can cause either desensitization or sensitization through lateral interaction, depending on whether the distance separating the illuminated and tested areas is small or large. This interaction occurs both in the rod and the cone mechanisms of the retina when each is tested separately by selection of appropriate adapting and testing stimuli.

2. In the mixed rod/cone region of the near periphery of the human retina the spatial parameters of interaction within the rod and cone systems were different when mapped out by using only one kind of adapting stimulus and sampling the excitatory state of the rod and cone systems by different probing stimuli.

3. Sensitizing interaction signals generated by the rod system are incapable of causing sensitization of the cone system.

Full text

PDF
113

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALPERN M. ROD-CONE INDEPENDENCE IN THE AFTER-FLASH EFFECT. J Physiol. 1965 Feb;176:462–472. doi: 10.1113/jphysiol.1965.sp007561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BARLOW H. B., FITZHUGH R., KUFFLER S. W. Dark adaptation, absolute threshold and Purkinje shift in single units of the cat's retina. J Physiol. 1957 Aug 6;137(3):327–337. doi: 10.1113/jphysiol.1957.sp005816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DONNER K. O., RUSHTON W. A. Rod-cone interaction in the frog's retina analysed by the Stiles-Crawford effect and by dark adaptation. J Physiol. 1959 Dec;149:303–317. doi: 10.1113/jphysiol.1959.sp006341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Daw N. W. Colour-coded ganglion cells in the goldfish retina: extension of their receptive fields by means of new stimuli. J Physiol. 1968 Aug;197(3):567–592. doi: 10.1113/jphysiol.1968.sp008575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Flamant F., Stiles W. S. The directional and spectral sensitivities of the retinal rods to adapting fields of different wave-lengths. J Physiol. 1948 Mar 15;107(2):187–202. doi: 10.1113/jphysiol.1948.sp004262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gouras P., Link K. Rod and cone interaction in dark-adapted monkey ganglion cells. J Physiol. 1966 May;184(2):499–510. doi: 10.1113/jphysiol.1966.sp007928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. McKee S. P., Westheimer G. Specificity of cone mechanisms in lateral interaction. J Physiol. 1970 Jan;206(1):117–128. doi: 10.1113/jphysiol.1970.sp009001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. RUSHTON W. A. Increment threshold and dark adaptation. J Opt Soc Am. 1963 Jan;53:104–109. doi: 10.1364/josa.53.000104. [DOI] [PubMed] [Google Scholar]
  9. RUSHTON W. A., WESTHEIMER G. The effect upon the rod threshold of bleaching neighbouring rods. J Physiol. 1962 Nov;164:318–329. doi: 10.1113/jphysiol.1962.sp007024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Werblin F. S., Dowling J. E. Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J Neurophysiol. 1969 May;32(3):339–355. doi: 10.1152/jn.1969.32.3.339. [DOI] [PubMed] [Google Scholar]
  11. Westheimer G. Spatial interaction in human cone vision. J Physiol. 1967 May;190(1):139–154. doi: 10.1113/jphysiol.1967.sp008198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Westheimer G. Spatial interaction in the human retina during scotopic vision. J Physiol. 1965 Dec;181(4):881–894. doi: 10.1113/jphysiol.1965.sp007803. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES