Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1969 Jan;200(1):255–265. doi: 10.1113/jphysiol.1969.sp008691

The mechanism of oscillatory activity at low membrane potentials in cardiac Purkinje fibres

O Hauswirth, D Noble, R W Tsien
PMCID: PMC1350427  PMID: 5761950

Abstract

1. The mechanism of oscillations at low membrane potentials in Purkinje fibres has been investigated using voltage clamp experiments.

2. The oscillations are generated by time-dependent variations in an outward current component, ix1, that is activated over the voltage range -40 to 10 mV. During normal activity, this current is responsible for initiating full repolarization to the resting potential (Noble & Tsien, 1969b) so that the oscillations represent a failure of the normal repolarization process, probably as a consequence of a small change in background (leakage) current.

3. These oscillations are distinct from the normal pacemaker activity of Purkinje fibres which is generated by a separate time-dependent current, iK2 (Noble & Tsien, 1968). iK2 shows no time-dependence when the membrane potential variations are entirely positive to -65 mV and cannot, therefore, be involved in the oscillatory activity apart from contributing a background outward current.

4. The amplitude and frequency of the oscillations are very sensitive to applied currents less than 1 μA/cm2. Larger currents abolish the oscillatory activity.

5. The mechanism of the oscillations is discussed in relation to the possible mechanisms underlying the natural pacemaker activity of the sino-atrial (SA) node.

Full text

PDF
255

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CARMELIET E. E. Chloride ions and the membrane potential of Purkinje fibres. J Physiol. 1961 Apr;156:375–388. doi: 10.1113/jphysiol.1961.sp006682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Fitzhugh R. Impulses and Physiological States in Theoretical Models of Nerve Membrane. Biophys J. 1961 Jul;1(6):445–466. doi: 10.1016/s0006-3495(61)86902-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. HUTTER O. F., NOBLE D. Anion conductance of cardiac muscle. J Physiol. 1961 Jul;157:335–350. doi: 10.1113/jphysiol.1961.sp006726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. HUTTER O. F., TRAUTWEIN W. Vagal and sympathetic effects on the pacemaker fibers in the sinus venosus of the heart. J Gen Physiol. 1956 May 20;39(5):715–733. doi: 10.1085/jgp.39.5.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. MULLER P. [Hypersensitivity and resistance to digitalis]. Schweiz Med Wochenschr. 1963 Aug 17;93:1038–1042. [PubMed] [Google Scholar]
  6. Müller P. Ca- and K-free solution and pacemaker activity in mammalian myocardium. Helv Physiol Pharmacol Acta. 1965 May;65(1):C38–C41. [PubMed] [Google Scholar]
  7. NOBLE D. A modification of the Hodgkin--Huxley equations applicable to Purkinje fibre action and pace-maker potentials. J Physiol. 1962 Feb;160:317–352. doi: 10.1113/jphysiol.1962.sp006849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Noble D., Tsien R. W. Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres. J Physiol. 1969 Jan;200(1):205–231. doi: 10.1113/jphysiol.1969.sp008689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Noble D., Tsien R. W. Reconstruction of the repolarization process in cardiac Purkinje fibres based on voltage clamp measurements of membrane current. J Physiol. 1969 Jan;200(1):233–254. doi: 10.1113/jphysiol.1969.sp008690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Noble D., Tsien R. W. The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres. J Physiol. 1968 Mar;195(1):185–214. doi: 10.1113/jphysiol.1968.sp008454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. TRAUTWEIN W., KASSEBAUM D. G. On the mechanism of spontaneous impulse generation in the pacemaker of the heart. J Gen Physiol. 1961 Nov;45:317–330. doi: 10.1085/jgp.45.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Toda N. Influence of sodium ions on the membrane potential of the sino-atrial node in response to sympathetic nerve stimulation. J Physiol. 1968 Jun;196(3):677–691. doi: 10.1113/jphysiol.1968.sp008529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. WEIDMANN S. The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system. J Physiol. 1955 Jan 28;127(1):213–224. doi: 10.1113/jphysiol.1955.sp005250. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES