Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1973 Sep;233(3):553–573. doi: 10.1113/jphysiol.1973.sp010323

Studies on the site of termination of static and dynamic fusimotor fibres within muscle spindles of the tenuissimus muscle of the cat

M C Brown, R G Butler
PMCID: PMC1350592  PMID: 4271083

Abstract

1. The site of termination of static and dynamic fusimotor fibres has been mapped by finding which intrafusal muscle fibres have been depleted of glycogen as a result of tetanic stimulation of single γ fibres. Long periods of stimulation coupled with occlusion of the blood supply were necessary to cause glycogen depletion.

2. In cat tenuissimus muscle, dynamic γ motor fibres always activated bag intrafusal muscle fibres, and occasionally chain fibres. Static γ fibres always activated chain fibres and frequently activated bag fibres as well.

3. It is argued that these results can be fitted into the hypothesis of the mechanism of internal functioning of the spindle originally proposed by Jansen & Matthews (1962). It is also pointed out that the results raise problems concerning the mechanism of development of the spindle motor innervation.

Full text

PDF
554

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BROWN M. C., CROWE A., MATTHEWS P. B. OBSERVATIONS ON THE FUSIMOTOR FIBRES OF THE TIBIALIS POSTERIOR MUSCLE OF THE CAT. J Physiol. 1965 Mar;177:140–159. doi: 10.1113/jphysiol.1965.sp007582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BULMER D. Dimedone as an aldehyde blocking reagent to facilitate the histochemical demonstration of glycogen. Stain Technol. 1959 Mar;34(2):95–98. doi: 10.3109/10520295909114656. [DOI] [PubMed] [Google Scholar]
  3. Bagust J., Lewis D. M., Westerman R. A. Polyneuronal innervation of kitten skeletal muscle. J Physiol. 1973 Feb;229(1):241–255. doi: 10.1113/jphysiol.1973.sp010136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baker D., Stacey M. J. Rabbit intrafusal muscle fibres. J Physiol. 1970 Sep;210(2):70P–72P. [PubMed] [Google Scholar]
  5. Barker D., Bessou P., Jankowska E., Pagès B., Stacey M. Distribution des axones fusimoteurs statiques et dynamiques aux fibres musculaires intrafusales, chez le chat. C R Acad Sci Hebd Seances Acad Sci D. 1972 Nov 27;275(22):2527–2530. [PubMed] [Google Scholar]
  6. Barker D., Emonet-Dénand F., Laporte Y., Proske U., Stacey M. Identification des terminaisons motrices des fibres fusimotrices statiques chez le chat. C R Acad Sci Hebd Seances Acad Sci D. 1970 Oct 5;271(14):1203–1206. [PubMed] [Google Scholar]
  7. Bessou P., Laporte Y., Pagès B. Similitude des effets (statiques ou dynamiques) exercés par des fibres fusimotrices uniques sur les terminaisons primaires de pusieurs fuseaux chez le chat. J Physiol (Paris) 1966 Jan-Feb;58(1):31–39. [PubMed] [Google Scholar]
  8. Bessou P., Laporte Y. Technique de préparation d'une fibre afférente I et d'une fibreafférente II innervant le même fuseau neuro-musculaire, chez le chat. J Physiol (Paris) 1965 Jul-Aug;57(4):511–520. [PubMed] [Google Scholar]
  9. Bessou P., Pagès B. Intracellular potentials from intrafusal muscle fibers evoked by stimulation of static and dynamic fusimotor axons in the cat. J Physiol. 1972 Dec;227(3):709–727. doi: 10.1113/jphysiol.1972.sp010055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brown M. C., Goodwin G. M., Matthews P. B. After-effects of fusimotor stimulation on the response of muscle spindle primary afferent endings. J Physiol. 1969 Dec;205(3):677–694. doi: 10.1113/jphysiol.1969.sp008990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Brown M. C. The responses of frog muscle spindles and fast and slow muscle fibres to a variety of mechanical inputs. J Physiol. 1971 Oct;218(1):1–17. doi: 10.1113/jphysiol.1971.sp009601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. CROWE A., MATTHEWS P. B. FURTHER STUDIES OF STATIC AND DYNAMIC FUSIMOTOR FIBRES. J Physiol. 1964 Oct;174:132–151. doi: 10.1113/jphysiol.1964.sp007477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. CROWE A., MATTHEWS P. B. THE EFFECTS OF STIMULATION OF STATIC AND DYNAMIC FUSIMOTOR FIBRES ON THE RESPONSE TO STRETCHING OF THE PRIMARY ENDINGS OF MUSCLE SPINDLES. J Physiol. 1964 Oct;174:109–131. doi: 10.1113/jphysiol.1964.sp007476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Clinch N. F. On the increase in rate of heat production caused by stretch in frog's skeletal muscle. J Physiol. 1968 May;196(2):397–414. doi: 10.1113/jphysiol.1968.sp008514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Edström L., Kugelberg E. Histochemical composition, distribution of fibres and fatiguability of single motor units. Anterior tibial muscle of the rat. J Neurol Neurosurg Psychiatry. 1968 Oct;31(5):424–433. doi: 10.1136/jnnp.31.5.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Emonet-Dénand F., Houk J. Etude comparative de la curarisation des synapses neuromusculaires des fibres fusimotrices gamma dynamiques et statiques, chez le chat. J Physiol (Paris) 1968 Sep-Oct;60(5):367–372. [PubMed] [Google Scholar]
  17. JANSEN J. K., MATTHEWS P. B. The central control of the dynamic response of muscle spindle receptors. J Physiol. 1962 May;161:357–378. doi: 10.1113/jphysiol.1962.sp006892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jones E. G. The innervation of muscle spindles in the Australian opossum, Trichosurus vulpecula, with special reference to the motor nerve endings. J Anat. 1966 Oct;100(Pt 4):733–759. [PMC free article] [PubMed] [Google Scholar]
  19. KATZ B., THESLEFF S. On the factors which determine the amplitude of the miniature end-plate potential. J Physiol. 1957 Jul 11;137(2):267–278. doi: 10.1113/jphysiol.1957.sp005811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. MATTHEWS P. B. The differentiation of two types of fusimotor fibre by their effects on the dynamic response of muscle spindle primary endings. Q J Exp Physiol Cogn Med Sci. 1962 Oct;47:324–333. doi: 10.1113/expphysiol.1962.sp001616. [DOI] [PubMed] [Google Scholar]
  21. Mark R. F. Matching muscles and motoneurones. A review of some experiments on motor nerve regeneration. Brain Res. 1969 Jul;14(2):245–254. doi: 10.1016/0006-8993(69)90108-5. [DOI] [PubMed] [Google Scholar]
  22. Marotte L. R., Mark R. F. The mechanism of selective reinnervation of fish eye muscle. I. Evidence from muscle function during recovery. Brain Res. 1970 Apr 1;19(1):41–51. doi: 10.1016/0006-8993(70)90235-0. [DOI] [PubMed] [Google Scholar]
  23. Marotte L. R., Mark R. P. The mechanism of selective reinnervation of fish eye muscle. II. Evidence from electronmicroscopy of nerve endings. Brain Res. 1970 Apr 1;19(1):53–62. doi: 10.1016/0006-8993(70)90236-2. [DOI] [PubMed] [Google Scholar]
  24. Milburn A. The early development of muscle spindles in the rat. J Cell Sci. 1973 Jan;12(1):175–195. doi: 10.1242/jcs.12.1.175. [DOI] [PubMed] [Google Scholar]
  25. Porayko O., Smith R. S. Morphology of muscle spindles in the rat. Experientia. 1968 Jun 15;24(6):588–589. doi: 10.1007/BF02153790. [DOI] [PubMed] [Google Scholar]
  26. Redfern P. A. Neuromuscular transmission in new-born rats. J Physiol. 1970 Aug;209(3):701–709. doi: 10.1113/jphysiol.1970.sp009187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. SMITH R. S. ACTIVITY OF INTRAFUSAL MUSCLE FIBRES IN MUSCLE SPINDLES OF XENOPUS LAEVIS. Acta Physiol Scand. 1964 Mar;60:223–229. doi: 10.1111/j.1748-1716.1964.tb02885.x. [DOI] [PubMed] [Google Scholar]
  28. Schabadasch A. L., Schabadasch S. A. Localization and dynamic changes of glycogen in frog retina adapted to darkness or light. I. Vision Res. 1972 Oct;12(10):1595–1604. doi: 10.1016/0042-6989(72)90032-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES