Skip to main content
Annals of Surgery logoLink to Annals of Surgery
. 1982 Aug;196(2):221–231. doi: 10.1097/00000658-198208000-00016

Metabolic utilization of intravenous fat emulsion during total parenteral nutrition.

J Nordenström, Y A Carpentier, J Askanazi, A P Robin, D H Elwyn, T W Hensle, J M Kinney
PMCID: PMC1352479  PMID: 6807226

Abstract

The effect of nutritional therapy on the utilization of an intravenous fat emulsion was studied in patients with injury, infection, and nutritional depletion using I-14C-trioleate labeled Intralipid. The plasma fractional removal rate and 14C-Intralipid oxidation rate was 55% ad 25% higher, respectively, in patients following trauma and during periods of infection receiving 5% dextrose than in healthy control subjects. Total parenteral nutrition (TPN) was administered as either 1) nonprotein calories given as glucose (Glucose System) or 2) equal proportions of glucose and intravenous fat emulsion (Lipid System). In comparison to TPN with the Lipid System, administration using the Glucose System resulted in higher plasma clearance rates and lower oxidation rates in both acutely ill and depleted patients. There was no correlation between the rates of plasma removal and oxidation of the intravenous fat emulsion (r = -0.04; NS) indicating that the removal of exogenous fat from plasma cannot be used as an indicator of oxidation. A negative linear relationship was seen between the oxidation rate of intravenous fat and carbohydrate intake (r = -0.92; p less than 0.001). Glucose intakes exceeding energy expenditure did not totally inhibit oxidation of the fat emulsion. The oxidation rate of 14C-Intralipid was linearly related to net whole body fat oxidation calculated using indirect calorimetry (r = -0.90; p less than 0.001) suggesting that the fat emulsion was oxidized in a similar manner to endogenous lipids. This study suggests that intravenous fat emulsions are utilized as an energy substrate in patients with major injury, infection or nutritional depletion. This observation, along with a relative unresponsiveness to glucose in surgical patients suggests that fat emulsions may be useful as a calorie source in patients receiving parenteral nutrition.

Full text

PDF
222

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Askanazi J., Carpentier Y. A., Elwyn D. H., Nordenström J., Jeevanandam M., Rosenbaum S. H., Gump F. E., Kinney J. M. Influence of total parenteral nutrition on fuel utilization in injury and sepsis. Ann Surg. 1980 Jan;191(1):40–46. doi: 10.1097/00000658-198001000-00008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Askanazi J., Elwyn D. H., Silverberg P. A., Rosenbaum S. H., Kinney J. M. Respiratory distress secondary to a high carbohydrate load: a case report. Surgery. 1980 May;87(5):596–598. [PubMed] [Google Scholar]
  3. BOBERG J., CARLSON L. A. DETERMINATION OF HEPARIN-INDUCED LIPOPROTEIN LIPASE ACTIVITY IN HUMAN PLASMA. Clin Chim Acta. 1964 Nov;10:420–427. doi: 10.1016/0009-8981(64)90171-8. [DOI] [PubMed] [Google Scholar]
  4. Bark S., Holm I., Håkansson I., Wretlind A. Nitrogen-sparing effect of fat emulsion compared with glucose in the postoperative period. Acta Chir Scand. 1976;142(6):423–427. [PubMed] [Google Scholar]
  5. Boberg J., Carlson L. A., Hallberg D. Application of a new intravenous fat tolerance test in the study of hypertriglyceridaemia in man. J Atheroscler Res. 1969 Mar-Apr;9(2):159–169. doi: 10.1016/s0368-1319(69)80051-7. [DOI] [PubMed] [Google Scholar]
  6. Brennan M. F., Moore F. D. An intravenous fat emulsion as a nitrogen sparer: comparison with lucose. J Surg Res. 1973 Jun;14(6):501–504. doi: 10.1016/0022-4804(73)90119-4. [DOI] [PubMed] [Google Scholar]
  7. Bucolo G., David H. Quantitative determination of serum triglycerides by the use of enzymes. Clin Chem. 1973 May;19(5):476–482. [PubMed] [Google Scholar]
  8. DOLE V. P., MEINERTZ H. Microdetermination of long-chain fatty acids in plasma and tissues. J Biol Chem. 1960 Sep;235:2595–2599. [PubMed] [Google Scholar]
  9. Elwyn D. H., Gump F. E., Munro H. N., Iles M., Kinney J. M. Changes in nitrogen balance of depleted patients with increasing infusions of glucose. Am J Clin Nutr. 1979 Aug;32(8):1597–1611. doi: 10.1093/ajcn/32.8.1597. [DOI] [PubMed] [Google Scholar]
  10. Elwyn D. H., Kinney J. M., Gump F. E., Askanazi J., Rosenbaum S. H., Carpentier Y. A. Some metabolic effects of fat infusions in depleted patients. Metabolism. 1980 Feb;29(2):125–132. doi: 10.1016/0026-0495(80)90136-5. [DOI] [PubMed] [Google Scholar]
  11. Elwyn D. H., Kinney J. M., Jeevanandam M., Gump F. E., Broell J. R. Influence of increasing carbohydrate intake on glucose kinetics in injured patients. Ann Surg. 1979 Jul;190(1):117–127. doi: 10.1097/00000658-197907000-00023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ericsson M., Rössner S. Correlations between intravenous fat tolerance and serum lipoproteins in normal and atherosclerotic subjects. Atherosclerosis. 1979 May;33(1):89–97. doi: 10.1016/0021-9150(79)90200-4. [DOI] [PubMed] [Google Scholar]
  13. FLEISCH A. Le métabolisme basal standard et sa détermination au moyen du "metabocalculator". Helv Med Acta. 1951 Feb;18(1):23–44. [PubMed] [Google Scholar]
  14. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  15. FREDRICKSON D. S., GORDON R. S., Jr The metabolism of albumin-bound C14-labeled unesterified fatty acids in normal human subjects. J Clin Invest. 1958 Nov;37(11):1504–1515. doi: 10.1172/JCI103742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. FREDRICKSON D. S., McCOLLESTER D. L., ONO K. The role of unesterified fatty acid transport in chylomicron metabolism. J Clin Invest. 1958 Oct;37(10):1333–1341. doi: 10.1172/JCI103722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gallin J. I., Kaye D., O'Leary W. M. Serum lipids in infection. N Engl J Med. 1969 Nov 13;281(20):1081–1086. doi: 10.1056/NEJM196911132812001. [DOI] [PubMed] [Google Scholar]
  18. HALLBERG D. STUDIES ON THE ELIMINATION OF EXOGENOUS LIPIDS FROM THE BLOOD STREAM. DETERMINATION AND SEPARATION OF THE PLASMA TRIGLYCERIDES AFTER SINGLE INJECTION OF A FAT EMULSION IN MAN. Acta Physiol Scand. 1964 Dec;62:407–421. doi: 10.1111/j.1748-1716.1964.tb10438.x. [DOI] [PubMed] [Google Scholar]
  19. HALLBERG D., WERSAELL J. THE ELECTRON-MICROSCOPIC INVESTIGATION OF CHYLOMICRONS AND FAT EMULSIONS FOR INTRAVENOUS USE. Acta Chir Scand Suppl. 1964;325:SUPPL 325–325:25. [PubMed] [Google Scholar]
  20. Jeejee hoy K. N., Anderson G. H., Nakhooda A. F., Greenberg G. R., Sanderson I., Marliss E. B. Metabolic studies in total parenteral nutrition with lipid in man. Comparison with glucose. J Clin Invest. 1976 Jan;57(1):125–136. doi: 10.1172/JCI108252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. KINNEY J. M., MORGAN A. P., DOMINGUES F. J., GILDNER K. J. A METHOD FOR CONTINUOUS MEASUREMENT OF GAS EXCHANGE AND EXPIRED RADIOACTIVITY IN ACUTELY ILL PATIENTS. Metabolism. 1964 Mar;13:205–211. doi: 10.1016/0026-0495(64)90099-x. [DOI] [PubMed] [Google Scholar]
  22. Kaufmann R. L., Matson C. F., Rowberg A. H., Beisel W. R. Defective lipid disposal mechanisms during bacterial infection in rhesus monkeys. Metabolism. 1976 Jun;25(6):615–624. doi: 10.1016/0026-0495(76)90058-5. [DOI] [PubMed] [Google Scholar]
  23. Lewis B., Mancini M., Mattock M., Chait A., Fraser T. R. Plasma triglyceride and fatty acid metabolism in diabetes mellitus. Eur J Clin Invest. 1972 Nov;2(6):445–453. doi: 10.1111/j.1365-2362.1972.tb00676.x. [DOI] [PubMed] [Google Scholar]
  24. Long J. M., 3rd, Wilmore D. W., Mason A. D., Jr, Pruitt B. A., Jr Effect of carbohydrate and fat intake on nitrogen excretion during total intravenous feeding. Ann Surg. 1977 Apr;185(4):417–422. doi: 10.1097/00000658-197704000-00008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Macfie J., Smith R. C., Hill G. L. Glucose or fat as a nonprotein energy source? A controlled clinical trial in gastroenterological patients requiring intravenous nutrition. Gastroenterology. 1981 Jan;80(1):103–107. [PubMed] [Google Scholar]
  26. Nestel P. J., Barter P. J. Triglyceride clearance during diets rich in carbohydrate or fats. Am J Clin Nutr. 1973 Mar;26(3):241–245. doi: 10.1093/ajcn/26.3.241. [DOI] [PubMed] [Google Scholar]
  27. Nordenström J., Jeevanandam M., Elwyn D. H., Carpentier Y. A., Askanazi J., Robin A., Kinney J. M. Increasing glucose intake during total parenteral nutrition increases norepinephrine excretion in trauma and sepsis. Clin Physiol. 1981 Oct;1(5):525–534. doi: 10.1111/j.1475-097x.1981.tb00919.x. [DOI] [PubMed] [Google Scholar]
  28. Reid D. J. Intravenous fat therapy. II. Changes in oxygen consumption and respiratory quotient. Br J Surg. 1967 Mar;54(3):204–207. doi: 10.1002/bjs.1800540312. [DOI] [PubMed] [Google Scholar]
  29. Robin A. P., Askanazi J., Greenwood M. R., Carpentier Y. A., Gump F. E., Kinney J. M. Lipoprotein lipase activity in surgical patients: influence of trauma and infection. Surgery. 1981 Aug;90(2):401–408. [PubMed] [Google Scholar]
  30. Robin A. P., Nordenström J., Askanazi J., Elwyn D. H., Carpentier Y. A., Kinney J. M. Plasma clearance of fat emulsion in trauma and sepsis: use of a three-stage lipid clearance test. JPEN J Parenter Enteral Nutr. 1980 Sep-Oct;4(5):505–510. doi: 10.1177/014860718000400514. [DOI] [PubMed] [Google Scholar]
  31. Spencer J. L., Zikria B. A., Kinney J. M., Broell J. R., Michailoff T. M., Lee A. B. A system for continuous measurement of gas exchange and respiratory functions. J Appl Physiol. 1972 Oct;33(4):523–528. doi: 10.1152/jappl.1972.33.4.523. [DOI] [PubMed] [Google Scholar]
  32. Steinberg D., Mayer S. E., Khoo J. C., Miller E. A., Miller R. E., Fredholm B., Eichner R. Hormonal regulation of lipase, phosphorylase, and glycogen synthase in adipose tissue. Adv Cyclic Nucleotide Res. 1975;5:549–568. [PubMed] [Google Scholar]
  33. Taskinen M. R., Tulikoura I., Nikkilä E. A., Ehnholm C. Effect of parenteral hyperalimentation on serum lipoproteins and on lipoprotein lipase activity of adipose tissue and skeletal muscle. Eur J Clin Invest. 1981 Aug;11(4):317–323. doi: 10.1111/j.1365-2362.1981.tb02123.x. [DOI] [PubMed] [Google Scholar]

Articles from Annals of Surgery are provided here courtesy of Lippincott, Williams, and Wilkins

RESOURCES