Skip to main content
Annals of Surgery logoLink to Annals of Surgery
. 1990 Jan;211(1):72–77. doi: 10.1097/00000658-199001000-00013

Different lymphocyte compartments respond differently to mitogenic stimulation after thermal injury.

E A Deitch 1, D Z Xu 1, L Qi 1
PMCID: PMC1357897  PMID: 2294848

Abstract

Because of the association between the development of an immunocompromised state and an increased risk of infection, increasing attention has been focused on describing and characterizing the immune consequences of thermal injury. Results of human studies are largely based on the in vitro responsiveness of peripheral blood leukocytes, while splenocytes are generally used in the animal studies. Because the response of lymphocytes from different lymphocyte compartments may vary, we compared the responses of murine peripheral blood, splenic, Peyer's patch, and mesenteric lymph node lymphocytes to a battery of mitogens after thermal injury. Burn-induced immunosuppression was maximal in the splenic lymphocyte compartment, where the responses to all three test mitogens were depressed throughout the 28-day postburn study period. Although the PHA-induced mitogen response of lymphocytes from the other three lymphoid compartments remained suppressed throughout the study period, the response to the mitogens Con-A and PWM generally returned to normal or supranormal levels by the seventh postburn day, Therefore it appears that the effect of a thermal injury on lymphocyte function varies according to the lymphocyte compartment examined and the mitogen tested. These results raise the question of whether animal studies using splenic lymphocytes can be correlated with human studies performed on circulating blood lymphocytes.

Full text

PDF
77

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker C. C., Miller C. L., Trunkey D. D. Predicting fatal sepsis in burn patients. J Trauma. 1979 Sep;19(9):641–648. doi: 10.1097/00005373-197909000-00001. [DOI] [PubMed] [Google Scholar]
  2. Bender E. M., Hansbrough J. F., Zapata-Sirvent R., Sullivan J., Claman H. N. Restoration of immunity in burned mice by cimetidine. J Trauma. 1985 Feb;25(2):131–137. doi: 10.1097/00005373-198502000-00008. [DOI] [PubMed] [Google Scholar]
  3. Burleson D. G., Mason A. D., Jr, Pruitt B. A., Jr Lymphoid subpopulation changes after thermal injury and thermal injury with infection in an experimental model. Ann Surg. 1988 Feb;207(2):208–212. doi: 10.1097/00000658-198802000-00016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burleson D. G., Vaughn G. K., Mason A. D., Jr, Pruitt B. A., Jr Flow cytometric measurement of rat lymphocyte subpopulations after burn injury and burn injury with infection. Arch Surg. 1987 Feb;122(2):216–220. doi: 10.1001/archsurg.1987.01400140098013. [DOI] [PubMed] [Google Scholar]
  5. Calvano S. E., Greenlee P. G., Reid A. M., deRiesthal H. F., Shires G. T., Antonacci A. C. Granulocyte contamination of Ficoll-Hypaque preparations of mononuclear cells following thermal injury may lead to substantial overestimation of lymphocyte recovery. J Trauma. 1988 Mar;28(3):353–361. doi: 10.1097/00005373-198803000-00011. [DOI] [PubMed] [Google Scholar]
  6. Constantian M. B. Impaired reactivity of burn patient lymphocytes to phytohemagglutinin in autologous serum: failure to improve responsiveness by washing in vitro. J Surg Res. 1979 Aug;27(2):84–92. doi: 10.1016/0022-4804(79)90114-8. [DOI] [PubMed] [Google Scholar]
  7. Cowdery J. S., McKiernan F. E. Analysis of T cell and B cell function in Peyer's patch and lamina propria of New Zealand Black and DBA/2 mice. J Immunol. 1986 Jun 1;136(11):4070–4074. [PubMed] [Google Scholar]
  8. Daniels J. C., Cobb E. K., Lynch J. B., Lewis S. R., Larson D. L., Ritzmann S. E. Altered nucleic acid synthesis in lymphocytes from patients with thermal burns. Surg Gynecol Obstet. 1970 May;130(5):783–788. [PubMed] [Google Scholar]
  9. Deitch E. A., Berg R. D. Endotoxin but not malnutrition promotes bacterial translocation of the gut flora in burned mice. J Trauma. 1987 Feb;27(2):161–166. doi: 10.1097/00005373-198702000-00012. [DOI] [PubMed] [Google Scholar]
  10. Deitch E. A. Infection in the compromised host. Surg Clin North Am. 1988 Feb;68(1):181–197. doi: 10.1016/s0039-6109(16)44439-7. [DOI] [PubMed] [Google Scholar]
  11. Deitch E. A., Landry K. N., McDonald J. C. Postburn impaired cell-mediated immunity may not be due to lazy lymphocytes but to overwork. Ann Surg. 1985 Jun;201(6):793–802. doi: 10.1097/00000658-198506000-00018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Deitch E. A., Maejima K., Berg R. Effect of oral antibiotics and bacterial overgrowth on the translocation of the GI tract microflora in burned rats. J Trauma. 1985 May;25(5):385–392. doi: 10.1097/00005373-198505000-00002. [DOI] [PubMed] [Google Scholar]
  13. Gough D. B., Moss N. M., Jordan A., Grbic J. T., Rodrick M. L., Mannick J. A. Recombinant interleukin-2 (rIL-2) improves immune response and host resistance to septic challenge in thermally injured mice. Surgery. 1988 Aug;104(2):292–300. [PubMed] [Google Scholar]
  14. Green D. R., Wang N., Zheng H. A suppressor-inducer factor produced by burn trauma-associated T cells. J Burn Care Rehabil. 1987 Nov-Dec;8(6):521–526. [PubMed] [Google Scholar]
  15. Guy-Grand D., Griscelli C., Vassalli P. The mouse gut T lymphocyte, a novel type of T cell. Nature, origin, and traffic in mice in normal and graft-versus-host conditions. J Exp Med. 1978 Dec 1;148(6):1661–1677. doi: 10.1084/jem.148.6.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kupper T. S., Baker C. C., Ferguson T. A., Green D. R. A burn induced Ly-2 suppressor T cell lowers resistance to bacterial infection. J Surg Res. 1985 Jun;38(6):606–612. doi: 10.1016/0022-4804(85)90082-4. [DOI] [PubMed] [Google Scholar]
  17. Kupper T. S., Green D. R., Durum S. K., Baker C. C. Defective antigen presentation to a cloned T helper cell by macrophages from burned mice can be restored with interleukin-1. Surgery. 1985 Aug;98(2):199–206. [PubMed] [Google Scholar]
  18. Ma L., Ma J. W., Deitch E. A., Specian R. D., Berg R. D. Genetic susceptibility to mucosal damage leads to bacterial translocation in a murine burn model. J Trauma. 1989 Sep;29(9):1245–1251. doi: 10.1097/00005373-198909000-00010. [DOI] [PubMed] [Google Scholar]
  19. Maejima K., Deitch E., Berg R. Promotion by burn stress of the translocation of bacteria from the gastrointestinal tracts of mice. Arch Surg. 1984 Feb;119(2):166–172. doi: 10.1001/archsurg.1984.01390140032006. [DOI] [PubMed] [Google Scholar]
  20. Mahler D., Batchelor J. R. Phytohaemagglutinin transformation of lymphocytes in burned patients. Transplantation. 1971 Nov;12(5):409–411. doi: 10.1097/00007890-197111000-00015. [DOI] [PubMed] [Google Scholar]
  21. Moss N. M., Gough D. B., Jordan A. L., Grbic J. T., Wood J. J., Rodrick M. L., Mannick J. A. Temporal correlation of impaired immune response after thermal injury with susceptibility to infection in a murine model. Surgery. 1988 Nov;104(5):882–887. [PubMed] [Google Scholar]
  22. Munster A. M., Winchurch R. A., Birmingham W. J., Keeling P. Longitudinal assay of lymphocyte responsiveness in patients with major burns. Ann Surg. 1980 Dec;192(6):772–775. doi: 10.1097/00000658-198012000-00013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ninnemann J. L. Immunosuppression following thermal injury through B cell activation of suppressor T cells. J Trauma. 1980 Mar;20(3):206–213. doi: 10.1097/00005373-198003000-00003. [DOI] [PubMed] [Google Scholar]
  24. Silver G. M., Gamelli R. L., O'Reilly M. The beneficial effect of granulocyte colony-stimulating factor (G-CSF) in combination with gentamicin on survival after Pseudomonas burn wound infection. Surgery. 1989 Aug;106(2):452–456. [PubMed] [Google Scholar]
  25. Teodorczyk-Injeyan J. A., Sparkes B. G., Peters W. J., Falk R. E. Lymphoproliferative response to phytohemagglutinin in the burn patient--no paradigm in vitro. J Burn Care Rehabil. 1986 Mar-Apr;7(2):112–116. doi: 10.1097/00004630-198603000-00007. [DOI] [PubMed] [Google Scholar]
  26. Walker H. L., Mason A. D., Jr A standard animal burn. J Trauma. 1968 Nov;8(6):1049–1051. doi: 10.1097/00005373-196811000-00006. [DOI] [PubMed] [Google Scholar]
  27. Winchurch R. A., Keeling P., Munster A. M. Studies of mitogen reactivity in lymphocytes from thermally injured patients. Proc Soc Exp Biol Med. 1980 Sep;164(4):445–448. doi: 10.3181/00379727-164-40893. [DOI] [PubMed] [Google Scholar]
  28. Wolfe J. H., Saporoschetz I., Young A. E., O'Connor N. E., Mannick J. A. Suppressive serum, suppressor lymphocytes, and death from burns. Ann Surg. 1981 Apr;193(4):513–520. [PMC free article] [PubMed] [Google Scholar]
  29. Wood J. J., O'Mahony J. B., Rodrick M. L., Mannick J. A. Immature T lymphocytes after injury characterized by morphology and phenotypic markers. Ann Surg. 1987 Nov;206(5):564–571. doi: 10.1097/00000658-198711000-00002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Xu D. Z., Deitch E. A., Sittig K., Qi L., McDonald J. C. In vitro cell-mediated immunity after thermal injury is not impaired. Density gradient purification of mononuclear cells is associated with spurious (artifactual) immunosuppression. Ann Surg. 1988 Dec;208(6):768–775. doi: 10.1097/00000658-198812000-00016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zola H. Differentiation and maturation of human B lymphocytes: a review. Pathology. 1985 Jul;17(3):365–381. doi: 10.3109/00313028509105488. [DOI] [PubMed] [Google Scholar]

Articles from Annals of Surgery are provided here courtesy of Lippincott, Williams, and Wilkins

RESOURCES