Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1957 Apr 3;136(1):148–173. doi: 10.1113/jphysiol.1957.sp005749

The action of cardiac glycosides on sodium and potassium movements in human red cells

I M Glynn
PMCID: PMC1358859  PMID: 13417139

Full text

PDF
148

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. EDELBERG R. The action of tannic acid on the erythrocyte membrane. J Cell Physiol. 1952 Dec;40(3):529–548. doi: 10.1002/jcp.1030400312. [DOI] [PubMed] [Google Scholar]
  2. ELLIS S. The importance of metabolic pathways for the positive inotropic actions of cardiac glycosides and calcium ions. J Pharmacol Exp Ther. 1953 Nov;109(3):233–243. [PubMed] [Google Scholar]
  3. FLUCKIGER E., VERZAR F. Die Wirkung von Aldosteron (Electrocortin) auf den Natrium-, Kalium- und Glykogen-Stoffwechsel des isolierten Muskels. Experientia. 1954 Jun 15;10(6):259–261. doi: 10.1007/BF02157397. [DOI] [PubMed] [Google Scholar]
  4. GLYNN I. M. Action of cardiac glycosides on red cells. J Physiol. 1955 May 27;128(2):56–7P. [PubMed] [Google Scholar]
  5. GLYNN I. M. Sodium and potassium movements in human red cells. J Physiol. 1956 Nov 28;134(2):278–310. doi: 10.1113/jphysiol.1956.sp005643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HILL A. V., MACPHERSON L. The effect of nitrate, iodide and bromide on the duration of the active state in skeletal muscle. Proc R Soc Lond B Biol Sci. 1954 Dec 15;143(910):81–102. doi: 10.1098/rspb.1954.0055. [DOI] [PubMed] [Google Scholar]
  7. HORVATH I., KIRALY C., SZERB J. Action of cardiac glycosides on the polymerization of actin. Nature. 1949 Nov 5;164(4175):792–792. doi: 10.1038/164792a0. [DOI] [PubMed] [Google Scholar]
  8. Hauschka T., Toennies G., Swain A. P. THE MECHANISM OF GROWTH INHIBITION BY HEXENOLACTONE. Science. 1945 Apr 13;101(2624):383–385. doi: 10.1126/science.101.2624.383-a. [DOI] [PubMed] [Google Scholar]
  9. KAHN J. B., Jr, ACHESON G. H. Effects of cardiac glyosides and other lactones, and of certain other compounds, on cation transfer in human erythrocytes. J Pharmacol Exp Ther. 1955 Nov;115(3):305–318. [PubMed] [Google Scholar]
  10. SCHATZMANN H. J. Die Wirkung von Desoxycorticosteron auf den aktiven Kationenaustausch an Rattenblutzellen. Experientia. 1954 Apr 15;10(4):189–190. doi: 10.1007/BF02157208. [DOI] [PubMed] [Google Scholar]
  11. SCHATZMANN H. J. Herzglykoside als Hemmstoffe für den aktiven Kalium- und Natriumtransport durch die Erythrocytenmembran. Helv Physiol Pharmacol Acta. 1953;11(4):346–354. [PubMed] [Google Scholar]
  12. SHAW T. I. Potassium movements in washed erythrocytes. J Physiol. 1955 Sep 28;129(3):464–475. doi: 10.1113/jphysiol.1955.sp005371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. SNELLMAN O., GELOTTE B. A reaction between a deaminase and heart actin, and inhibition of the effect with cardiac glycoside. Nature. 1950 Apr 15;165(4198):604–604. doi: 10.1038/165604a0. [DOI] [PubMed] [Google Scholar]
  14. STREETEN D. H., SOLOMON A. K. The effect of ACTH and adrenal steroids on K transport in human erythrocytes. J Gen Physiol. 1954 May 20;37(5):643–661. doi: 10.1085/jgp.37.5.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. WOLLENBERGER A. Non-specificity of the effect of cardiac glycosides on the polymerization of actin. Experientia. 1954 Jul 15;10(7):311–312. doi: 10.1007/BF02158746. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES