Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1961 Apr;156(2):274–293. doi: 10.1113/jphysiol.1961.sp006675

Adenosinetriphosphatase activity and the active movements of alkali metal ions

E T Dunham, I M Glynn
PMCID: PMC1359885  PMID: 13725019

Full text

PDF
291

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURTON K. Formation constants for the complexes of adenosine di- or tri-phosphate with magnesium or calcium ions. Biochem J. 1959 Feb;71(2):388–395. doi: 10.1042/bj0710388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BURTON K., KREBS H. A. The free-energy changes associated with the individual steps of the tricarboxylic acid cycle, glycolysis and alcoholic fermentation and with the hydrolysis of the pyrophosphate groups of adenosinetriphosphate. Biochem J. 1953 Apr;54(1):94–107. doi: 10.1042/bj0540094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CAFFREY R. W., GABRIO B. W., HUENNEKENS F. M., TREMBLAY R. Erythrocyte metabolism. II. Adenosinetriphosphatase. J Biol Chem. 1956 Nov;223(1):1–8. [PubMed] [Google Scholar]
  4. CALDWELL P. C. The effects of certain metabolic inhibitors on the phosphate esters of the squid giant axon. J Physiol. 1956 May 28;132(2):35–6P. [PubMed] [Google Scholar]
  5. CLARKSON E. M., MAIZELS M. Distribution of phosphatases in human erythrocytes. J Physiol. 1952 Jan 28;116(1):112–128. doi: 10.1113/jphysiol.1952.sp004693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. EDWARDS C., HARRIS E. J. Factors influencing the sodium movement in frog muscle with a discussion of the mechanism of sodium movement. J Physiol. 1957 Mar 11;135(3):567–580. doi: 10.1113/jphysiol.1957.sp005731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GARDOS G. Akkumulation der Kaliumionen durch menschliche Blutkörperchen. Acta Physiol Acad Sci Hung. 1954;6(2-3):191–199. [PubMed] [Google Scholar]
  8. GLYNN I. M. Sodium and potassium movements in human red cells. J Physiol. 1956 Nov 28;134(2):278–310. doi: 10.1113/jphysiol.1956.sp005643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GLYNN I. M. The action of cardiac glycosides on sodium and potassium movements in human red cells. J Physiol. 1957 Apr 3;136(1):148–173. doi: 10.1113/jphysiol.1957.sp005749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GLYNN I. M. The ionic permeability of the red cell membrane. Prog Biophys Biophys Chem. 1957;8:241–307. [PubMed] [Google Scholar]
  11. HARRIS E. J., MAIZELS M. The permeability of human erythrocytes to sodium. J Physiol. 1951 May;113(4):506–524. doi: 10.1113/jphysiol.1951.sp004591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HERBERT E. A study of the liberation of orthophosphate from adenosine triphosphate by the stromata of human erythrocytes. J Cell Physiol. 1956 Feb;47(1):11–36. doi: 10.1002/jcp.1030470103. [DOI] [PubMed] [Google Scholar]
  13. HODGKIN A. L., KEYNES R. D. Active transport of cations in giant axons from Sepia and Loligo. J Physiol. 1955 Apr 28;128(1):28–60. doi: 10.1113/jphysiol.1955.sp005290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HORVATH I., KIRALY C., SZERB J. Action of cardiac glycosides on the polymerization of actin. Nature. 1949 Nov 5;164(4175):792–792. doi: 10.1038/164792a0. [DOI] [PubMed] [Google Scholar]
  15. JACOBSON W. J. Successful nutrition education in elementary schools. Fed Proc. 1959 Jul;18(2 Pt 2):121–128. [PubMed] [Google Scholar]
  16. KAHN J. B., Jr, ACHESON G. H. Effects of cardiac glyosides and other lactones, and of certain other compounds, on cation transfer in human erythrocytes. J Pharmacol Exp Ther. 1955 Nov;115(3):305–318. [PubMed] [Google Scholar]
  17. KEYNES R. D. The ionic fluxes in frog muscle. Proc R Soc Lond B Biol Sci. 1954 May 27;142(908):359–382. doi: 10.1098/rspb.1954.0030. [DOI] [PubMed] [Google Scholar]
  18. MAIZELS M. Cation transport in chicken erythrocytes. J Physiol. 1954 Aug 27;125(2):263–277. doi: 10.1113/jphysiol.1954.sp005156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Maizels M. Cation control in human erythrocytes. J Physiol. 1949 May 15;108(3):247–263. [PMC free article] [PubMed] [Google Scholar]
  20. SCHATZMANN H. J. Herzglykoside als Hemmstoffe für den aktiven Kalium- und Natriumtransport durch die Erythrocytenmembran. Helv Physiol Pharmacol Acta. 1953;11(4):346–354. [PubMed] [Google Scholar]
  21. SKOU J. C. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta. 1957 Feb;23(2):394–401. doi: 10.1016/0006-3002(57)90343-8. [DOI] [PubMed] [Google Scholar]
  22. SNELLMAN O., GELOTTE B. A reaction between a deaminase and heart actin, and inhibition of the effect with cardiac glycoside. Nature. 1950 Apr 15;165(4198):604–604. doi: 10.1038/165604a0. [DOI] [PubMed] [Google Scholar]
  23. SZEKELY M., MANYAI S., STRAUB F. B. Uber den mechanismus der osmotischen hämolyse. Acta Physiol Acad Sci Hung. 1952;3(3-4):571–584. [PubMed] [Google Scholar]
  24. WHITTAM R. Potassium movements and ATP in human red cells. J Physiol. 1958 Mar 11;140(3):479–497. [PMC free article] [PubMed] [Google Scholar]
  25. WOLLENBERGER A. Non-specificity of the effect of cardiac glycosides on the polymerization of actin. Experientia. 1954 Jul 15;10(7):311–312. doi: 10.1007/BF02158746. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES