Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1961 Apr;156(2):389–414. doi: 10.1113/jphysiol.1961.sp006683

Effect of barium ions on membrane potentials of cockroach giant axons

T Narahashi
PMCID: PMC1359893  PMID: 13727775

Full text

PDF
414

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURKE W., GINSBORG B. L. The electrical properties of the slow muscle fibre membrane. J Physiol. 1956 Jun 28;132(3):586–598. doi: 10.1113/jphysiol.1956.sp005551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. FATT P., GINSBORG B. L. The ionic requirements for the production of action potentials in crustacean muscle fibres. J Physiol. 1958 Aug 6;142(3):516–543. doi: 10.1113/jphysiol.1958.sp006034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. FRANKENHAEUSER B., HODGKIN A. L. The after-effects of impulses in the giant nerve fibres of Loligo. J Physiol. 1956 Feb 28;131(2):341–376. doi: 10.1113/jphysiol.1956.sp005467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. GREENGARD P., STRAUB R. W. After-potentials in mammalian non-myelinated nerve fibres. J Physiol. 1958 Dec 30;144(3):442–462. doi: 10.1113/jphysiol.1958.sp006112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GREENGARD P., STRAUB R. W. Restoration by barium of action potentials in sodium-deprived mammalian B and C fibres. J Physiol. 1959 Mar 12;145(3):562–569. doi: 10.1113/jphysiol.1959.sp006162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HODGKIN A. L., HUXLEY A. F. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol. 1952 Apr;116(4):497–506. doi: 10.1113/jphysiol.1952.sp004719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. NARAHASHI T., YAMASAKI T. Behaviors of membrane potential in the cockroach giant axons poisoned by DDT. J Cell Comp Physiol. 1960 Apr;55:131–142. doi: 10.1002/jcp.1030550204. [DOI] [PubMed] [Google Scholar]
  9. NARAHASHI T., YAMASAKI T. Mechanism of increase in negative after-potential by dicophanum (DDT) in the giant axons of the cockroach. J Physiol. 1960 Jun;152:122–140. doi: 10.1113/jphysiol.1960.sp006475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. NARAHASHI T., YAMASAKI T. Mechanism of the after-potential production in the giant axons of the cockroach. J Physiol. 1960 Apr;151:75–88. [PMC free article] [PubMed] [Google Scholar]
  11. SHANES A. M. Electrochemical aspects of physiological and pharmacological action in excitable cells. II. The action potential and excitation. Pharmacol Rev. 1958 Jun;10(2):165–273. [PubMed] [Google Scholar]
  12. WEIDMANN S. The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system. J Physiol. 1955 Jan 28;127(1):213–224. doi: 10.1113/jphysiol.1955.sp005250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. YAMASAKI T., NARAHASHI T. Effects of potassium and sodium ions on the resting and action potentials of the giant axon of the cockroach. Nature. 1958 Dec 27;182(4652):1805–1805. doi: 10.1038/1821805a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES