Skip to main content
British Journal of Clinical Pharmacology logoLink to British Journal of Clinical Pharmacology
. 1995 Jul;40(1):11–18. doi: 10.1111/j.1365-2125.1995.tb04528.x

The role of the renin-angiotensin and natriuretic peptide systems in the pulmonary vasculature.

R I Cargill 1, B J Lipworth 1
PMCID: PMC1365021  PMID: 8527262

Abstract

1. The role of vasoactive peptide systems in the pulmonary vasculature has been studied much less extensively than systemic vascular and endocrine effects. The current understanding of the role of the renin-angiotensin (RAS) and natriuretic peptide systems (NPS) in the pulmonary circulation is therefore reviewed. 2. Plasma concentrations of angiotensin II, the main vasoactive component of the RAS, are elevated in pulmonary hypertension and may interact with hypoxaemia to cause further pulmonary vasoconstriction. Pharmacological manipulation of angiotensin II can attenuate hypoxic pulmonary vasoconstriction but larger studies are needed to establish the efficacy of this therapeutic strategy in established pulmonary hypertension. 3. Although all the known natriuretic peptides, ANP, BNP and CNP are elevated in cor pulmonale, only ANP and BNP appear to have pulmonary vasorelaxant activity in humans. ANP and BNP can also attenuate hypoxic pulmonary vasoconstriction, suggesting a possible counter-regulatory role for these peptides. Inhibition of ANP/BNP metabolism by neutral endopeptidase has been shown to attenuate development of hypoxic pulmonary hypertension but this property has not been tested in humans. 4. It is also well established that there are potentially important endocrine and systemic circulatory interactions between the RAS and NPS. This also occurs in the pulmonary circulation and in humans, where at least BNP acts to attenuate angiotensin II induced pulmonary vasoconstriction. This interaction may be particularly relevant as a mechanism to counter-regulate overactivity of the RAS.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
13

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adnot S., Andrivet P., Chabrier P. E., Piquet J., Plas P., Braquet P., Roudot-Thoraval F., Brun-Buisson C. Atrial natriuretic factor in chronic obstructive lung disease with pulmonary hypertension. Physiological correlates and response to peptide infusion. J Clin Invest. 1989 Mar;83(3):986–993. doi: 10.1172/JCI113985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adnot S., Chabrier P. E., Brun-Buisson C., Viossat I., Braquet P. Atrial natriuretic factor attenuates the pulmonary pressor response to hypoxia. J Appl Physiol (1985) 1988 Nov;65(5):1975–1983. doi: 10.1152/jappl.1988.65.5.1975. [DOI] [PubMed] [Google Scholar]
  3. Alexander J. M., Nyby M. D., Jasberg K. A. Effect of angiotensin on hypoxic pulmonary vasoconstriction in isolated dog lung. J Appl Physiol. 1976 Jul;41(1):84–88. doi: 10.1152/jappl.1976.41.1.84. [DOI] [PubMed] [Google Scholar]
  4. Anand I. S., Chandrashekhar Y., Ferrari R., Sarma R., Guleria R., Jindal S. K., Wahi P. L., Poole-Wilson P. A., Harris P. Pathogenesis of congestive state in chronic obstructive pulmonary disease. Studies of body water and sodium, renal function, hemodynamics, and plasma hormones during edema and after recovery. Circulation. 1992 Jul;86(1):12–21. doi: 10.1161/01.cir.86.1.12. [DOI] [PubMed] [Google Scholar]
  5. Baertschi A. J., Adams J. M., Sullivan M. P. Acute hypoxemia stimulates atrial natriuretic factor secretion in vivo. Am J Physiol. 1988 Aug;255(2 Pt 2):H295–H300. doi: 10.1152/ajpheart.1988.255.2.H295. [DOI] [PubMed] [Google Scholar]
  6. Bertoli L., Lo Cicero S., Busnardo I., Rizzato G., Montanari G. Effects of captopril on hemodynamics and blood gases in chronic obstructive lung disease with pulmonary hypertension. Respiration. 1986;49(4):251–256. doi: 10.1159/000194887. [DOI] [PubMed] [Google Scholar]
  7. Boschetti E., Tantucci C., Cocchieri M., Fornari G., Grassi V., Sorbini C. A. Acute effects of captopril in hypoxic pulmonary hypertension. Comparison with transient oxygen administration. Respiration. 1985;48(4):296–302. doi: 10.1159/000194843. [DOI] [PubMed] [Google Scholar]
  8. Burke C. M., Harte M., Duncan J., Connolly H. M., Horgan J. H., Theodore J., Callaghan B. Captopril and domiciliary oxygen in chronic airflow obstruction. Br Med J (Clin Res Ed) 1985 Apr 27;290(6477):1251–1251. doi: 10.1136/bmj.290.6477.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cargill R. I., Barr C. S., Coutie W. J., Struthers A. D., Lipworth B. J. C-type natriuretic peptide levels in cor pulmonale and in congestive heart failure. Thorax. 1994 Dec;49(12):1247–1249. doi: 10.1136/thx.49.12.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cargill R. I., Lipworth B. J. Pulmonary vasorelaxant activity of atrial natriuretic peptide and brain natriuretic peptide in humans. Thorax. 1995 Feb;50(2):183–185. doi: 10.1136/thx.50.2.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cargill R. I., Struthers A. D., Lipworth B. J. Human C-type natriuretic peptide: effects on the haemodynamic and endocrine responses to angiotensin II. Cardiovasc Res. 1995 Jan;29(1):108–111. [PubMed] [Google Scholar]
  12. Cleland J. G., Oakley C. M. Vascular tone in heart failure: the neuroendocrine-therapeutic interface. Br Heart J. 1991 Oct;66(4):264–267. doi: 10.1136/hrt.66.4.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cleland J., Semple P., Hodsman P., Ball S., Ford I., Dargie H. Angiotensin II levels, hemodynamics, and sympathoadrenal function after low-dose captopril in heart failure. Am J Med. 1984 Nov;77(5):880–886. doi: 10.1016/0002-9343(84)90530-8. [DOI] [PubMed] [Google Scholar]
  14. Connell J. M., Jardine A. G., Northridge D. B. Therapeutic use of atrial natriuretic factor. Br J Clin Pharmacol. 1992 Aug;34(2):102–105. doi: 10.1111/j.1365-2125.1992.tb04117.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Elsner D., Müntze A., Kromer E. P., Riegger G. A. Effectiveness of endopeptidase inhibition (candoxatril) in congestive heart failure. Am J Cardiol. 1992 Aug 15;70(4):494–498. doi: 10.1016/0002-9149(92)91196-b. [DOI] [PubMed] [Google Scholar]
  16. Fagard R., Amery A., Lijnen P. Angiotensin II and not sodium status is the major determinant of the agonistic/antagonistic balance of saralasin's actions. Clin Sci (Lond) 1980 Dec;59 (Suppl 6):75s–78s. doi: 10.1042/cs059075s. [DOI] [PubMed] [Google Scholar]
  17. Farber M. O., Roberts L. R., Weinberger M. H., Robertson G. L., Fineberg N. S., Manfredi F. Abnormalities of sodium and H2O handling in chronic obstructive lung disease. Arch Intern Med. 1982 Jul;142(7):1326–1330. [PubMed] [Google Scholar]
  18. Hales C. A., Rouse E. T., Kazemi H. Failure of saralasin acetate, a competitive inhibitor of angiotensin II, to diminish alveolar hypoxic vasoconstriction in the dog. Cardiovasc Res. 1977 Nov;11(6):541–546. doi: 10.1093/cvr/11.6.541. [DOI] [PubMed] [Google Scholar]
  19. Higenbottam T., Wheeldon D., Wells F., Wallwork J. Long-term treatment of primary pulmonary hypertension with continuous intravenous epoprostenol (prostacyclin). Lancet. 1984 May 12;1(8385):1046–1047. doi: 10.1016/s0140-6736(84)91452-1. [DOI] [PubMed] [Google Scholar]
  20. Hulks G., Jardine A., Connell J. M., Thomson N. C. Bronchodilator effect of atrial natriuretic peptide in asthma. BMJ. 1989 Oct 28;299(6707):1081–1082. doi: 10.1136/bmj.299.6707.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ikram H., Maslowski A. H., Nicholls M. G., Espiner E. A., Hull F. T. Haemodynamic and hormonal effects of captopril in primary pulmonary hypertension. Br Heart J. 1982 Dec;48(6):541–545. doi: 10.1136/hrt.48.6.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jamison R. L., Canaan-Kühl S., Pratt R. The natriuretic peptides and their receptors. Am J Kidney Dis. 1992 Nov;20(5):519–530. doi: 10.1016/s0272-6386(12)70269-x. [DOI] [PubMed] [Google Scholar]
  23. Jansen T. L., Morice A. H., Brown M. J. A comparison of the vasodilator responses to atrial peptides in the pulmonary and renal arteries of the pig in vitro. Br J Pharmacol. 1987 Jul;91(3):687–691. doi: 10.1111/j.1476-5381.1987.tb11263.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Johnston C. I. Biochemistry and pharmacology of the renin-angiotensin system. Drugs. 1990;39 (Suppl 1):21–31. doi: 10.2165/00003495-199000391-00005. [DOI] [PubMed] [Google Scholar]
  25. Kawashima A., Kubo K., Hirai K., Yoshikawa S., Matsuzawa Y., Kobayashi T. Plasma levels of atrial natriuretic peptide under acute hypoxia in normal subjects. Respir Physiol. 1989 Apr;76(1):79–91. doi: 10.1016/0034-5687(89)90019-4. [DOI] [PubMed] [Google Scholar]
  26. Kilburn K. H., Dowell A. R. Renal function in respiratory failure. Effects of hypoxia, hyperoxia, and hypercapnia. Arch Intern Med. 1971 Apr;127(4):754–762. [PubMed] [Google Scholar]
  27. Kreiner G., Siostrzonek P., Heinz G., Pabinger I., Roden M., Gössinger H. Drug-testing in patients with pulmonary hypertension of unknown cause. Eur Heart J. 1992 Jun;13(6):776–780. doi: 10.1093/oxfordjournals.eurheartj.a060255. [DOI] [PubMed] [Google Scholar]
  28. Lang C. C., Choy A. M., Struthers A. D. Atrial and brain natriuretic peptides: a dual natriuretic peptide system potentially involved in circulatory homeostasis. Clin Sci (Lond) 1992 Nov;83(5):519–527. doi: 10.1042/cs0830519. [DOI] [PubMed] [Google Scholar]
  29. Lang C. C., Coutie W. J., Struthers A. D., Dhillon D. P., Winter J. H., Lipworth B. J. Elevated levels of brain natriuretic peptide in acute hypoxaemic chronic obstructive pulmonary disease. Clin Sci (Lond) 1992 Nov;83(5):529–533. doi: 10.1042/cs0830529. [DOI] [PubMed] [Google Scholar]
  30. Lang C. C., Motwani J., Coutie W. J., Struthers A. D. Influence of candoxatril on plasma brain natriuretic peptide in heart failure. Lancet. 1991 Jul 27;338(8761):255–255. doi: 10.1016/0140-6736(91)90397-8. [DOI] [PubMed] [Google Scholar]
  31. Leier C. V., Bambach D., Nelson S., Hermiller J. B., Huss P., Magorien R. D., Unverferth D. V. Captopril in primary pulmonary hypertension. Circulation. 1983 Jan;67(1):155–161. doi: 10.1161/01.cir.67.1.155. [DOI] [PubMed] [Google Scholar]
  32. Lipworth B. J., Dagg K. D. Vasoconstrictor effects of angiotensin II on the pulmonary vascular bed. Chest. 1994 May;105(5):1360–1364. doi: 10.1378/chest.105.5.1360. [DOI] [PubMed] [Google Scholar]
  33. Mannix E. T., Dowdeswell I., Carlone S., Palange P., Aronoff G. R., Farber M. O. The effect of oxygen on sodium excretion in hypoxemic patients with chronic obstructive lung disease. Chest. 1990 Apr;97(4):840–844. doi: 10.1378/chest.97.4.840. [DOI] [PubMed] [Google Scholar]
  34. McMahon T. J., Kaye A. D., Hood J. S., Minkes R. K., Nossaman B. D., Kadowitz P. J. Inhibitory effects of DuP 753 and EXP3174 on responses to angiotensin II in pulmonary vascular bed of the cat. J Appl Physiol (1985) 1992 Nov;73(5):2054–2061. doi: 10.1152/jappl.1992.73.5.2054. [DOI] [PubMed] [Google Scholar]
  35. McMurtry I. F. Angiotensin is not required for hypoxic constriction in salt solution-perfused rat lungs. J Appl Physiol Respir Environ Exerc Physiol. 1984 Feb;56(2):375–380. doi: 10.1152/jappl.1984.56.2.375. [DOI] [PubMed] [Google Scholar]
  36. Morice A. H., Pepke-Zaba J., Brown M. J., Thomas P. S., Higenbottam T. W. Atrial natriuretic peptide in primary pulmonary hypertension. Eur Respir J. 1990 Sep;3(8):910–913. [PubMed] [Google Scholar]
  37. Noll B., Hein H., Maisch B., von Wichert P. Veränderungen des atrialen natriuretischen Peptids bei Patienten mit Lungenembolie und obstruktiver Atemwegserkrankung. Pneumologie. 1990 Feb;44(2):70–73. [PubMed] [Google Scholar]
  38. Numan N. A., Gillespie M. N., Altiere R. J. Pulmonary vasorelaxant activity of atrial peptides. Pulm Pharmacol. 1990;3(1):29–33. doi: 10.1016/0952-0600(90)90006-5. [DOI] [PubMed] [Google Scholar]
  39. Ou L. C., Sardella G. L., Hill N. S., Thron C. D. Does atrial natriuretic factor protect against right ventricular overload? I. Hemodynamic study. J Appl Physiol (1985) 1989 Oct;67(4):1606–1611. doi: 10.1152/jappl.1989.67.4.1606. [DOI] [PubMed] [Google Scholar]
  40. Patakas D., Georgopoulos D., Rodini H., Christaki P. Effects of captopril in patients with chronic obstructive pulmonary disease and secondary pulmonary hypertension. Postgrad Med J. 1988 Mar;64(749):193–195. doi: 10.1136/pgmj.64.749.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Peacock A. J., Matthews A. Transpulmonary angiotensin II formation and pulmonary haemodynamics in stable hypoxic lung disease: the effect of captopril. Respir Med. 1992 Jan;86(1):21–26. doi: 10.1016/s0954-6111(06)80143-5. [DOI] [PubMed] [Google Scholar]
  42. Pison C. M., Wolf J. E., Levy P. A., Dubois F., Brambilla C. G., Paramelle B. Effects of captopril combined with oxygen therapy at rest and on exercise in patients with chronic bronchitis and pulmonary hypertension. Respiration. 1991;58(1):9–14. doi: 10.1159/000195888. [DOI] [PubMed] [Google Scholar]
  43. Rogers T. K., Sheedy W., Waterhouse J., Howard P., Morice A. H. Haemodynamic effects of atrial natriuretic peptide in hypoxic chronic obstructive pulmonary disease. Thorax. 1994 Mar;49(3):233–239. doi: 10.1136/thx.49.3.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Rogers T. K., Stewart A. G., Morice A. H. Effect of chronic hypoxia on rat pulmonary resistance vessels: vasodilatation by atrial natriuretic peptide. Clin Sci (Lond) 1992 Dec;83(6):723–729. doi: 10.1042/cs0830723. [DOI] [PubMed] [Google Scholar]
  45. Rota M., Brulot N., Rezgui N., Labrousse J., Allard D. Increased plasma cyclic guanosine monophosphate concentration in chronic obstructive pulmonary disease patients with increased circulating atrial natriuretic peptide. Clin Chim Acta. 1991 Sep 14;201(1-2):75–81. doi: 10.1016/0009-8981(91)90026-9. [DOI] [PubMed] [Google Scholar]
  46. Ryan J. W., Ryan U. S., Schultz D. R., Whitaker C., Chung A. Subcellular localization of pulmonary antiotensin-converting enzyme (kininase II). Biochem J. 1975 Feb;146(2):497–499. doi: 10.1042/bj1460497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. SEGEL N., HARRIS P., BISHOP J. M. The effects of synthetic hypertensin of the systemic and pulmonary circulations in man. Clin Sci. 1961 Feb;20:49–61. [PubMed] [Google Scholar]
  48. Stumpe K. O., Schmengler K., Bette L., Overlack A., Kolloch R. Persistent hemodynamic and clinical improvement after captopril in patients with pulmonary hypertension. Herz. 1986 Aug;11(4):217–225. [PubMed] [Google Scholar]
  49. Suga S., Nakao K., Hosoda K., Mukoyama M., Ogawa Y., Shirakami G., Arai H., Saito Y., Kambayashi Y., Inouye K. Receptor selectivity of natriuretic peptide family, atrial natriuretic peptide, brain natriuretic peptide, and C-type natriuretic peptide. Endocrinology. 1992 Jan;130(1):229–239. doi: 10.1210/endo.130.1.1309330. [DOI] [PubMed] [Google Scholar]
  50. Takada K., Hayashi M., Takahashi K., Yasui S. Acute effects of oral captopril on hemodynamics in patients with cor pulmonale. Jpn Circ J. 1986 Nov;50(11):1055–1061. doi: 10.1253/jcj.50.1055. [DOI] [PubMed] [Google Scholar]
  51. Thompson J. S., Sheedy W., Morice A. H. Effects of the neutral endopeptidase inhibitor, SCH 42495, on the cardiovascular remodelling secondary to chronic hypoxia in rats. Clin Sci (Lond) 1994 Jul;87(1):109–114. doi: 10.1042/cs0870109. [DOI] [PubMed] [Google Scholar]
  52. Wei C. M., Heublein D. M., Perrella M. A., Lerman A., Rodeheffer R. J., McGregor C. G., Edwards W. D., Schaff H. V., Burnett J. C., Jr Natriuretic peptide system in human heart failure. Circulation. 1993 Sep;88(3):1004–1009. doi: 10.1161/01.cir.88.3.1004. [DOI] [PubMed] [Google Scholar]
  53. Winter R. J., Meleagros L., Pervez S., Jamal H., Krausz T., Polak J. M., Bloom S. R. Atrial natriuretic peptide levels in plasma and in cardiac tissues after chronic hypoxia in rats. Clin Sci (Lond) 1989 Jan;76(1):95–101. doi: 10.1042/cs0760095. [DOI] [PubMed] [Google Scholar]
  54. Winter R. J., Zhao L., Krausz T., Hughes J. M. Neutral endopeptidase 24.11 inhibition reduces pulmonary vascular remodeling in rats exposed to chronic hypoxia. Am Rev Respir Dis. 1991 Dec;144(6):1342–1346. doi: 10.1164/ajrccm/144.6.1342. [DOI] [PubMed] [Google Scholar]
  55. Zakheim R. M., Mattioli L., Molteni A., Mullis K. B., Bartley J. Prevention of pulmonary vascular changes of chronic alveolar hypoxia by inhibition of angiotensin I-converting enzyme in the rat. Lab Invest. 1975 Jul;33(1):57–61. [PubMed] [Google Scholar]
  56. Zhao L., Hughes J. M., Winter R. J. Effects of natriuretic peptides and neutral endopeptidase 24.11 inhibition in isolated perfused rat lung. Am Rev Respir Dis. 1992 Nov;146(5 Pt 1):1198–1201. doi: 10.1164/ajrccm/146.5_Pt_1.1198. [DOI] [PubMed] [Google Scholar]
  57. Zhao L., Winter R. J., Krausz T., Hughes J. M. Effects of continuous infusion of atrial natriuretic peptide on the pulmonary hypertension induced by chronic hypoxia in rats. Clin Sci (Lond) 1991 Sep;81(3):379–385. doi: 10.1042/cs0810379. [DOI] [PubMed] [Google Scholar]
  58. Zieliński J., Hawrylkiewicz I., Górecka D., Gluskowski J., Kościńska M. Captopril effects on pulmonary and systemic hemodynamics in chronic cor pulmonale. Chest. 1986 Oct;90(4):562–565. doi: 10.1378/chest.90.4.562. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Clinical Pharmacology are provided here courtesy of British Pharmacological Society

RESOURCES