Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1965 May;5(3):257–273. doi: 10.1016/s0006-3495(65)86715-7

The Physical State of Viral Nucleic Acid and the Sensitivity of Viruses to Ultraviolet Light

Andrew M Rauth
PMCID: PMC1367734  PMID: 19431332

Abstract

Ultraviolet light action spectra in the range 2250 to 3020 A have been determined for the plaque-forming ability of the following bacteriophage and animal viruses: T-2, ϕx-174, R-17, fr, MS2, 7-S, fd, vesicular stomatitis, vaccinia, encephalomyocarditis, reovirus-3, and polyoma. Absolute quantum yields for the plaque-forming ability of MS2, fr, fd, ϕx-174, and T-2 were determined over the range 2250 to 3020 A. Relative quantum yields for plaque-forming ability indicated that viruses with single-stranded nucleic acid were on the average ten times more sensitive to UV than double-stranded viruses. In addition for ten of the twelve viruses a relation existed between the shape of their action spectra and the stranded state of their nucleic acid. The ratio of the inactivation cross-section at 2650 A to that at 2250 A for these viruses was 1.0 for single-stranded viruses and 2.0 for viruses with double-stranded nucleic acid. The above relations were dependent on the stranded state of the nucleic acid not the ribose or deoxyribose form of the sugar present.

Full text

PDF
260

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLISON A. C., BURKE D. C. The nucleic acid contents of viruses. J Gen Microbiol. 1962 Feb;27:181–194. doi: 10.1099/00221287-27-2-181. [DOI] [PubMed] [Google Scholar]
  2. DAVIS J. E., SINSHEIMER R. L. The replication of bacteriophage MS2. 1. Transfer of parental nucleic acid to progeny phage. J Mol Biol. 1963 Mar;6:203–207. doi: 10.1016/s0022-2836(63)80069-8. [DOI] [PubMed] [Google Scholar]
  3. DULBECCO R. Experiments on photoreactivation of bacteriophages inactivated with ultraviolet radiation. J Bacteriol. 1950 Mar;59(3):329–347. doi: 10.1128/jb.59.3.329-347.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DULBECCO R., FREEMAN G. Plaque production by the polyoma virus. Virology. 1959 Jul;8(3):396–397. doi: 10.1016/0042-6822(59)90043-1. [DOI] [PubMed] [Google Scholar]
  5. DULBECCO R., VOGT M. Biological properties of poliomyelitis viruses as studied by the plaque technique. Ann N Y Acad Sci. 1955 Sep 27;61(4):790–800. doi: 10.1111/j.1749-6632.1955.tb42535.x. [DOI] [PubMed] [Google Scholar]
  6. DULBECCO R., VOGT M. One-step growth curve of Western equine encephalomyelitis virus on chicken embryo cells grown in vitro and analysis of virus yields from single cells. J Exp Med. 1954 Feb;99(2):183–199. doi: 10.1084/jem.99.2.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DULBECCO R., VOGT M. Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med. 1954 Feb;99(2):167–182. doi: 10.1084/jem.99.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. ENGLANDER S. W., EPSTEIN H. T. Optical methods for measuring nucleoprotein and nucleic acid concentrations. Arch Biochem Biophys. 1957 May;68(1):144–149. doi: 10.1016/0003-9861(57)90334-x. [DOI] [PubMed] [Google Scholar]
  9. FEARY T. W., FISHER E., Jr, FISHER T. N. A small RNA containing Pseudomonas aeruginosa bacteriophage. Biochem Biophys Res Commun. 1963 Mar 5;10:359–365. doi: 10.1016/0006-291x(63)90538-2. [DOI] [PubMed] [Google Scholar]
  10. FEINER R. R., ELLISON S. A. T1 bacteriophage production in Escherichia coli. J Bacteriol. 1963 Jan;85:7–11. doi: 10.1128/jb.85.1.7-11.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. GINOZA W. RADIOSENSITIVE MOLECULAR WEIGHT OF SINGLE-STRANDED VIRUS NUCLEIC ACIDS. Nature. 1963 Aug 3;199:453–456. doi: 10.1038/199453a0. [DOI] [PubMed] [Google Scholar]
  12. GINOZA W., SIEGEL A., WILDMAN S. G. Sensitivity to ultra-violet light of infectious tobacco mosaic virus nucleic acid. Nature. 1956 Nov 17;178(4542):1117–1118. doi: 10.1038/1781117a0. [DOI] [PubMed] [Google Scholar]
  13. GRAHAM A. F., SIMINOVITCH L. Proliferation of monkey kidney cells in rotating cultures. Proc Soc Exp Biol Med. 1955 Jun;89(2):326–327. doi: 10.3181/00379727-89-21800. [DOI] [PubMed] [Google Scholar]
  14. GREEN M., PINA M. Biochemical studies on adenovirus multiplication. IV. Isolation, purification, and chemical analysis of adenovirus. Virology. 1963 May;20:199–207. doi: 10.1016/0042-6822(63)90157-0. [DOI] [PubMed] [Google Scholar]
  15. Gomatos P. J., Tamm I. THE SECONDARY STRUCTURE OF REOVIRUS RNA. Proc Natl Acad Sci U S A. 1963 May;49(5):707–714. doi: 10.1073/pnas.49.5.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. HERRIOTT R. M., BARLOW J. L. The protein coats or ghosts of coliphage T2. I. Preparation, assay, and some chemical properties. J Gen Physiol. 1957 May 20;40(5):809–825. doi: 10.1085/jgp.40.5.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. HOFFMANN-BERLING H., MARVIN D. A., DUERWALD H. EIN FAEDIGER DNS-PHAGE (FD) UND EIN SPHAERISCHER RNS-PHAGE (FR), WIRTSSPEZIFISCH FUER MAENNLICHE STAEMME VON E. COLI. 1. PRAEPARATION UND CHEMISCHE EIGENSCHAFTEN VON FD UND FR. Z Naturforsch B. 1963 Nov;18:876–883. [PubMed] [Google Scholar]
  18. JANSZ H. S., POUWELS P. H., VAN ROTTERDAM SENSITIVITY TO ULTRAVIOLET LIGHT OF SINGLE- AND DOUBLE-STRANDED DNA. Biochim Biophys Acta. 1963 Dec 20;76:655–657. [PubMed] [Google Scholar]
  19. JOHNS H. E., PEARSON M. L., LEBLANC J. C., HELLEINER C. W. THE ULTRAVIOLET PHOTOCHEMISTRY OF THYMIDYLYL-(3'-5')-THYMIDINE. J Mol Biol. 1964 Aug;9:503–524. doi: 10.1016/s0022-2836(64)80223-0. [DOI] [PubMed] [Google Scholar]
  20. LOEB T., ZINDER N. D. A bacteriophage containing RNA. Proc Natl Acad Sci U S A. 1961 Mar 15;47:282–289. doi: 10.1073/pnas.47.3.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. MARTIN E. M., MALEC J., SVED S., WORK T. S. Studies on protein and nucleic acid metabolism in virus-infected mammalian cells. 1. Encephalomyocarditis virus in Krebs II mouse-ascites-tumour cells. Biochem J. 1961 Sep;80:585–597. doi: 10.1042/bj0800585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. POWELL W. F. Radiosensitivity as an index of herpes simplex virus development. Virology. 1959 Sep;9:1–19. doi: 10.1016/0042-6822(59)90096-0. [DOI] [PubMed] [Google Scholar]
  23. PREVEC L., WHITMORE G. F. PURIFICATION OF VESICULAR STOMATITIS VIRUS AND THE ANALYSIS OF P32-LABELED VIRAL COMPONENTS. Virology. 1963 Jul;20:464–471. doi: 10.1016/0042-6822(63)90095-3. [DOI] [PubMed] [Google Scholar]
  24. RUSSELL W. C., CRAWFORD L. V. SOME CHARACTERISTICS OF THE DEOXYRIBONUCLEIC ACID FROM HERPES SIMPLEX VIRUS. Virology. 1963 Nov;21:353–361. doi: 10.1016/0042-6822(63)90196-x. [DOI] [PubMed] [Google Scholar]
  25. SECHAUD J., KELLENBERGER E. Lyse précoce, provoquée par le chloroforme, chez les bactéries infectées par du bactériophage. Ann Inst Pasteur (Paris) 1956 Jan;90(1):102–106. [PubMed] [Google Scholar]
  26. SETLOW J. K., SETLOW R. B. Ultraviolet action spectra of ordered and disordered DNA. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1619–1627. doi: 10.1073/pnas.47.10.1619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. SETLOW R. B., SWENSON P. A., CARRIER W. L. THYMINE DIMERS AND INHIBITION OF DNA SYNTHESIS BY ULTRAVIOLET IRRADIATION OF CELLS. Science. 1963 Dec 13;142(3598):1464–1466. doi: 10.1126/science.142.3598.1464. [DOI] [PubMed] [Google Scholar]
  28. SETLOW R., BOYCE R. The ultraviolet light inactivation of phi-X174 bacteriophage at different wave lengths and pH's. Biophys J. 1960 Sep;1:29–41. doi: 10.1016/s0006-3495(60)86873-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. SINSHEIMER R. L., STARMAN B., NAGLER C., GUTHRIE S. The process of infection with bacteriophage phi-XI74. I. Evidence for a "replicative form". J Mol Biol. 1962 Mar;4:142–160. doi: 10.1016/s0022-2836(62)80047-3. [DOI] [PubMed] [Google Scholar]
  30. STENT G. S. Mating in the reproduction of bacterial viruses. Adv Virus Res. 1958;5:95–149. doi: 10.1016/s0065-3527(08)60672-7. [DOI] [PubMed] [Google Scholar]
  31. Setlow J. K., Setlow R. B. EVIDENCE FOR THE EXISTENCE OF A SINGLE-STRANDED STAGE OF T2 BACTERIOPHAGE DURING REPLICATION. Proc Natl Acad Sci U S A. 1960 Jun;46(6):791–798. doi: 10.1073/pnas.46.6.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. WASSERMANN F. E. The inactivation of adenoviruses by ultraviolet irradiation and nitrous acid. Virology. 1962 Jun;17:335–341. doi: 10.1016/0042-6822(62)90124-1. [DOI] [PubMed] [Google Scholar]
  33. WHITMORE G. F., STANNERS C. P., TILL J. E., GULYAS S. Nucleic acid synthesis and the division cycle in x-irradiated L-strain mouse cells. Biochim Biophys Acta. 1961 Feb 12;47:66–77. doi: 10.1016/0006-3002(61)90830-7. [DOI] [PubMed] [Google Scholar]
  34. ZELLE M. R., HOLLAENDER A. Monochromatic ultraviolet action spectra and quantum yields for inactivation of T1 and T2 Escherichia coli bacteriophages. J Bacteriol. 1954 Aug;68(2):210–215. doi: 10.1128/jb.68.2.210-215.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES