Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1970 Apr;10(4):323–344. doi: 10.1016/S0006-3495(70)86305-6

The Hyperpolarizing Region of the Current-Voltage Curve in Frog Skin

Oscar A Candia
PMCID: PMC1367757  PMID: 5436882

Abstract

Excitability (action potential and refractory period) has been described by A. Finkelstein in the depolarizing region of the current-voltage (I-V) curve of the isolated frog skin. Recently Fishman and Macey interpreted this phenomenon as a consequence of a region with negative resistance that confers to the I-V curve an N shape. We have studied the I-V relation of the isolated frog skin in the hyperpolarizing region with a current-ramp system. It was found that in Na2SO4 Ringer's, the resistance continuously increases in the hyperpolarizing direction. When hyperpolarization reaches 300 mv an electrical breakdown occurs, occasionally followed by a region of negative resistance. In NaCl Ringer's the breakdown was also found although the I-V relation was reasonably linear. Unidirectional Na+ outflux was measured at different levels of voltage clamping across the skin and with different Na+ concentrations in the solutions. The Na+ outflux was found to be relatively independent of these parameters. Based on these results a Na+ rectifying structure is postulated. An electrical model for active Na+ transport including a diode and an oscillator is proposed. The effects of CO2, nitrogen, amiloride, and ouabain on the I-V relation are described.

Full text

PDF
324

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bentley P. J. Amiloride: a potent inhibitor of sodium transport across the toad bladder. J Physiol. 1968 Mar;195(2):317–330. doi: 10.1113/jphysiol.1968.sp008460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blumenthal R., Caplan S. R., Kedem O. The coupling of an enzymatic reaction to transmembrane flow of electric current in a synthetic "active transport" system. Biophys J. 2008 Dec 31;7(6):735–757. doi: 10.1016/S0006-3495(67)86620-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown A. C., Kastella K. G. The AC impedance of frog skin and its relation to active transport. Biophys J. 1965 Jul;5(4):591–606. doi: 10.1016/S0006-3495(65)86736-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bueno E. J., Corchs L. Induced pacemaker activity on toad skin. J Gen Physiol. 1968 Jun;51(6):785–801. doi: 10.1085/jgp.51.6.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Candia O. A. An automatic voltage clamp recorder for inexcitable membranes. IEEE Trans Biomed Eng. 1966 Oct;13(4):189–194. doi: 10.1109/tbme.1966.4502436. [DOI] [PubMed] [Google Scholar]
  6. Coster H. G. A quantitative analysis of the voltage-current relationships of fixed charge membranes and the associated property of "punch-through". Biophys J. 1965 Sep;5(5):669–686. doi: 10.1016/S0006-3495(65)86745-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ehrlich E. N., Crabbé J. The mechanism of action of amipramizide. Pflugers Arch. 1968;302(1):79–96. doi: 10.1007/BF00586783. [DOI] [PubMed] [Google Scholar]
  8. FINKELSTEIN A. ELECTRICAL EXCITABILITY OF ISOLATED FROG SKIN AND TOAD BLADDER. J Gen Physiol. 1964 Jan;47:545–565. doi: 10.1085/jgp.47.3.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fishman H. M., Macey R. I. Calcium effects in the electrical excitability of "split" frog skin. Biochim Biophys Acta. 1968 Apr 29;150(3):482–487. doi: 10.1016/0005-2736(68)90148-x. [DOI] [PubMed] [Google Scholar]
  10. Fishman H. M., Macey R. I. The N-shaped current-potential characteristic in frog skin. 3. Ionic dependence. Biophys J. 1969 Feb;9(2):151–162. doi: 10.1016/s0006-3495(69)86376-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fishman H. M., Macey R. I. The N-shaped current-potential characteristic in frog skin. I. Time development during step voltage clamp. Biophys J. 1969 Feb;9(2):127–139. doi: 10.1016/S0006-3495(69)86374-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fishman H. M., Macey R. I. The N-shaped current-potential characteristic in frog skin. II. Kinetic behavior during ramp voltage clamp. Biophys J. 1969 Feb;9(2):140–150. doi: 10.1016/S0006-3495(69)86375-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lindemann B., Thorns U. Fast potential spike of frog skin generated at the outer surface of the epithelium. Science. 1967 Dec 15;158(3807):1473–1477. doi: 10.1126/science.158.3807.1473. [DOI] [PubMed] [Google Scholar]
  14. MAURO A. Anomalous impedance, a phenomenological property of time-variant resistance. An analytic review. Biophys J. 1961 Mar;1:353–372. doi: 10.1016/s0006-3495(61)86894-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mauro A. Space Charge Regions in Fixed Charge Membranes and the Associated Property of Capacitance. Biophys J. 1962 Mar;2(2 Pt 1):179–198. doi: 10.1016/s0006-3495(62)86848-9. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES