Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1965 Nov;5(6):777–807. doi: 10.1016/S0006-3495(65)86752-2

Studies on the Ionic Permeability of Muscle Cells and their Models

Gilbert N Ling, Margaret M Ochsenfeld
PMCID: PMC1367903  PMID: 5884012

Abstract

We studied the effect an alkali-metal ion exercised on the rate of entry of another alkali-metal ion into frog sartorius muscle cells and their models (i.e., ion exchange resin and sheep's wool). In the case of frog muscle, it was shown that the interaction fell into one of four categories; competition, facilitation, and two types of indifference. The observed pK value (4.6 to 4.7) of the surface anionic groups that combine with the alkali-metal ions suggests that they are β- or γ-carboxyl groups of proteins on the cell surface. The results were compared with four theoretical models which included three membrane models (continuous lipoid membrane with carrier; leaky membrane with carrier; membrane with fixed ionic sites) and one bulk-phase model. This comparison led to the conclusion that the only model that is self-consistent and agrees with all of the experimental facts is the one based on the concept that the entire living cell represents a proteinaceous fixed-charge system; this model correctly predicts all four types of interaction observed.

Full text

PDF
781

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BREGMAN J. I. Cation exchange processes. Ann N Y Acad Sci. 1953 Nov 11;57(3):125–143. doi: 10.1111/j.1749-6632.1953.tb36392.x. [DOI] [PubMed] [Google Scholar]
  2. CONWAY E. J., DUGGAN F. A cation carrier in the yeast cell wall. Biochem J. 1958 Jun;69(2):265–274. doi: 10.1042/bj0690265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Epstein E., Hagen C. E. A KINETIC STUDY OF THE ABSORPTION OF ALKALI CATIONS BY BARLEY ROOTS. Plant Physiol. 1952 Jul;27(3):457–474. doi: 10.1104/pp.27.3.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. LING G. N. The interpretation of selective ionic permeability and cellular potentials in terms of the fixed charge induction hypothesis. J Gen Physiol. 1960 May;43:149–174. doi: 10.1085/jgp.43.5.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. LING G., GERARD R. W. The normal membrane potential of frog sartorius fibers. J Cell Physiol. 1949 Dec;34(3):383–396. doi: 10.1002/jcp.1030340304. [DOI] [PubMed] [Google Scholar]
  6. ROBERTSON J. D. The ultrastructure of cell membranes and their derivatives. Biochem Soc Symp. 1959;16:3–43. [PubMed] [Google Scholar]
  7. SEN A. K., WIDDAS W. F. Variations of the parameters of glucose transfer across the human erythrocyte membrane in the presence of inhibitors of transfer. J Physiol. 1962 Mar;160:404–416. doi: 10.1113/jphysiol.1962.sp006855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. SHEPPARD C. W., BEYL G. E. Cation exchange in mammalian erythrocytes. III. The prolytic effect of x-rays on human cells. J Gen Physiol. 1951 May;34(5):691–704. doi: 10.1085/jgp.34.5.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. WILBRANDT W., ROSENBERG T. The concept of carrier transport and its corollaries in pharmacology. Pharmacol Rev. 1961 Jun;13:109–183. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES