Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1967 Mar;7(2):121–135. doi: 10.1016/S0006-3495(67)86579-2

Use of Helical Wheels to Represent the Structures of Proteins and to Identify Segments with Helical Potential

Marianne Schiffer, Allen B Edmundson
PMCID: PMC1368002  PMID: 6048867

Abstract

The three-dimensional structures of α-helices can be represented by two-dimensional projections which we call helical wheels. Initially, the wheels were employed as graphical restatements of the known structures determined by Kendrew, Perutz, Watson, and their colleagues at the University of Cambridge and by Phillips and his coworkers at The Royal Institution. The characteristics of the helices, discussed by Perutz et al. (1965), and Blake et al. (1965), can be readily visualized by examination of these wheels. For example, the projections for most helical segments of myoglobin, hemoglobin, and lysozyme have distinctive hydrophobic arcs. Moreover, the hydrophobic residues tend to be clustered in the n ± 3, n, n ± 4 positions of adjacent helical turns. Such hydrophobic arcs are not observed when the sequences of nonhelical segments are plotted on the wheels. Since the features of these projections are also distinctive, however, the wheels can be used to divide sequences into segments with either helical or nonhelical potential. The sequences of insulin, cytochrome c, ribonuclease A, chymotrypsinogen A, tobacco mosaic virus protein, and human growth hormone were chosen for application of the wheels for this purpose.

Full text

PDF
121

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERER F. A., UHLIG H., WEBER E., SCHRAMM G. Primary structure of the protein of tobacco mosaic virus. Nature. 1960 Jun 18;186:922–925. doi: 10.1038/186922a0. [DOI] [PubMed] [Google Scholar]
  2. ANFINSEN C. B. The tertiary structure of ribonuclease. Brookhaven Symp Biol. 1962 Dec;15:184–198. [PubMed] [Google Scholar]
  3. Blake C. C., Koenig D. F., Mair G. A., North A. C., Phillips D. C., Sarma V. R. Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Angstrom resolution. Nature. 1965 May 22;206(4986):757–761. doi: 10.1038/206757a0. [DOI] [PubMed] [Google Scholar]
  4. CANFIELD R. E. THE AMINO ACID SEQUENCE OF EGG WHITE LYSOZYME. J Biol Chem. 1963 Aug;238:2698–2707. [PubMed] [Google Scholar]
  5. CRESTFIELD A. M., STEIN W. H., MOORE S. Alkylation and identification of the histidine residues at the active site of ribonuclease. J Biol Chem. 1963 Jul;238:2413–2419. [PubMed] [Google Scholar]
  6. Chan S. K., Margoliash E. Amino acid sequence of chicken heart cytochrome c. J Biol Chem. 1966 Jan 25;241(2):507–515. [PubMed] [Google Scholar]
  7. FUNATSU G., TSUGITA A., FRAENKEL-CONRAT H. STUDIES ON THE AMINO ACID SEQUENCE OF TOBACCO MOSAIC VIRUS PROTEIN. V. AMINO ACID SEQUENCES OF TWO PEPTIDES FROM TRYPTIC DIGESTS AND LOCATION OF AMIDE GROUP. Arch Biochem Biophys. 1964 Apr;105:25–41. doi: 10.1016/0003-9861(64)90232-2. [DOI] [PubMed] [Google Scholar]
  8. Guzzo A. V. The influence of amino-acid sequence on protein structure. Biophys J. 1965 Nov;5(6):809–822. doi: 10.1016/S0006-3495(65)86753-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HARRISON S. C., BLOUT E. R. REVERSIBLE CONFORMATIONAL CHANGES OF MYOGLOBIN AND APOMYOGLOBIN. J Biol Chem. 1965 Jan;240:299–303. [PubMed] [Google Scholar]
  10. HIRS C. H., MOORE S., STEIN W. H. The sequence of the amino acid residues in performic acid-oxidized ribonuclease. J Biol Chem. 1960 Mar;235:633–647. [PubMed] [Google Scholar]
  11. Hartley B. S., Brown J. R., Kauffman D. L., Smillie L. B. Evolutionary similarities between pancreatic proteolytic enzymes. Nature. 1965 Sep 11;207(5002):1157–1159. doi: 10.1038/2071157a0. [DOI] [PubMed] [Google Scholar]
  12. JOLLES J., JAUREGUI ADELL J., BERNIER I., JOLLES P. LA STRUCTURE CHIMIQUE DU LYSOZYME DE BLANC D'OEUF DE POULE: 'ETUDE D'ETAILL'EE. Biochim Biophys Acta. 1963 Dec 13;78:668–689. doi: 10.1016/0006-3002(63)91033-3. [DOI] [PubMed] [Google Scholar]
  13. JOLLES P., JAUREGUI ADELL J., JOLLES J. LE LYSOZYME DE BLANC D'OEUF DE POULE: DISPOSITION DES PONTS DISULFURES. C R Hebd Seances Acad Sci. 1964 Apr 13;258:3926–3928. [PubMed] [Google Scholar]
  14. KENDREW J. C. Myoglobin and the structure of proteins. Science. 1963 Mar 29;139(3561):1259–1266. doi: 10.1126/science.139.3561.1259. [DOI] [PubMed] [Google Scholar]
  15. KENDREW J. C. Side-chain interactions in myoglobin. Brookhaven Symp Biol. 1962 Dec;15:216–228. [PubMed] [Google Scholar]
  16. KENDREW J. C., WATSON H. C., STRANDBERG B. E., DICKERSON R. E., PHILLIPS D. C., SHORE V. C. The amino-acid sequence x-ray methods, and its correlation with chemical data. Nature. 1961 May 20;190:666–670. doi: 10.1038/190666a0. [DOI] [PubMed] [Google Scholar]
  17. KENDREW J. C., WATSON H. C., STRANDBERG B. E., DICKERSON R. E., PHILLIPS D. C., SHORE V. C. The amino-acid sequence x-ray methods, and its correlation with chemical data. Nature. 1961 May 20;190:666–670. doi: 10.1038/190666a0. [DOI] [PubMed] [Google Scholar]
  18. MARFEY P. S., UZIEL M., LITTLE J. REACTION OF BOVINE PANCREATIC RIBONUCLEASE A WITH 1,5-DIFLUORO-2,4-DINITROBENZENE. II. STRUCTURE OF AN INTRAMOLECULARLY BRIDGED DERIVATIVE. J Biol Chem. 1965 Aug;240:3270–3275. [PubMed] [Google Scholar]
  19. MARGOLIASH E. PRIMARY STRUCTURE AND EVOLUTION OF CYTOCHROME C. Proc Natl Acad Sci U S A. 1963 Oct;50:672–679. doi: 10.1073/pnas.50.4.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Phillips D. C. The three-dimensional structure of an enzyme molecule. Sci Am. 1966 Nov;215(5):78–90. doi: 10.1038/scientificamerican1166-78. [DOI] [PubMed] [Google Scholar]
  21. Prothero J. W. Correlation between the distribution of amino acids and alpha helices. Biophys J. 1966 May;6(3):367–370. doi: 10.1016/S0006-3495(66)86662-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. RYLE A. P., SANGER F., SMITH L. F., KITAI R. The disulphide bonds of insulin. Biochem J. 1955 Aug;60(4):541–556. doi: 10.1042/bj0600541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. SANGER F., THOMPSON E. O. P. The amino-acid sequence in the glycyl chain of insulin. II. The investigation of peptides from enzymic hydrolysates. Biochem J. 1953 Feb;53(3):366–374. doi: 10.1042/bj0530366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. SANGER F., TUPPY H. The amino-acid sequence in the phenylalanyl chain of insulin. I. The identification of lower peptides from partial hydrolysates. Biochem J. 1951 Sep;49(4):463–481. doi: 10.1042/bj0490463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. SPACKMAN D. H., STEIN W. H., MOORE S. The disulfide bonds of ribonuclease. J Biol Chem. 1960 Mar;235:648–659. [PubMed] [Google Scholar]
  26. Shearer W. T., Brown R. K., Bryce G. F., Gurd F. R. Reversible disruption by cupric ions of a helical conformation of a polypeptide derived from ribonuclease. J Biol Chem. 1966 Jun 10;241(11):2665–2671. [PubMed] [Google Scholar]
  27. Tsugita A., Gish D. T., Young J., Fraenkel-Conrat H., Knight C. A., Stanley W. M. THE COMPLETE AMINO ACID SEQUENCE OF THE PROTEIN OF TOBACCO MOSAIC VIRUS. Proc Natl Acad Sci U S A. 1960 Nov;46(11):1463–1469. doi: 10.1073/pnas.46.11.1463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. URNES P., DOTY P. Optical rotation and the conformation of polypeptides and proteins. Adv Protein Chem. 1961;16:401–544. doi: 10.1016/s0065-3233(08)60033-9. [DOI] [PubMed] [Google Scholar]
  29. URRY D. W., DOTY P. ON THE CONFORMATION OF HORSE HEART FERRI- AND FERROCYTOCHROME C. J Am Chem Soc. 1965 Jun 20;87:2756–2758. doi: 10.1021/ja01090a041. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES