Skip to main content
RNA logoLink to RNA
. 1998 May;4(5):594–602. doi: 10.1017/s1355838298980049

Chimeric rRNAs containing the GTPase centers of the developmentally regulated ribosomal rRNAs of Plasmodium falciparum are functionally distinct.

I V Velichutina 1, M J Rogers 1, T F McCutchan 1, S W Liebman 1
PMCID: PMC1369642  PMID: 9582100

Abstract

The human malaria parasite, Plasmodium falciparum, maintains at least two distinct types, A and S, of developmentally controlled ribosomal RNAs. To investigate specific functions associated with these rRNAs, we replaced the Saccharomyces cerevisiae GTPase domain of the 25S rRNA with GTPase domains corresponding to the Plasmodium A- and S-type 28S rRNAs. The A-type rRNA differs in a single nonconserved base pair from the yeast GTPase domain. The S-type rRNA GTPase domain has three additional changes in highly conserved residues, making it unique among all known rRNA sequences. The expression of either A- or S-type chimeric rRNA in yeast increased translational accuracy. Yeast containing only A-type chimeric rRNA and no wild-type yeast rRNA grew at the wild-type level. In contrast, S-type chimeric rRNA severely inhibited growth in the presence of wild-type yeast rRNA, and caused lethality in the absence of the wild-type yeast rRNA. We show what before could only be hypothesized, that the changes in the GTPase center of ribosomes present during different developmental stages of Plasmodium species can result in fundamental changes in the biology of the organism.

Full Text

The Full Text of this article is available as a PDF (410.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boeke J. D., LaCroute F., Fink G. R. A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet. 1984;197(2):345–346. doi: 10.1007/BF00330984. [DOI] [PubMed] [Google Scholar]
  2. Chernoff Y. O., Newnam G. P., Liebman S. W. The translational function of nucleotide C1054 in the small subunit rRNA is conserved throughout evolution: genetic evidence in yeast. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2517–2522. doi: 10.1073/pnas.93.6.2517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chernoff Y. O., Vincent A., Liebman S. W. Mutations in eukaryotic 18S ribosomal RNA affect translational fidelity and resistance to aminoglycoside antibiotics. EMBO J. 1994 Feb 15;13(4):906–913. doi: 10.1002/j.1460-2075.1994.tb06334.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Green R., Noller H. F. Ribosomes and translation. Annu Rev Biochem. 1997;66:679–716. doi: 10.1146/annurev.biochem.66.1.679. [DOI] [PubMed] [Google Scholar]
  5. Gunderson J. H., Sogin M. L., Wollett G., Hollingdale M., de la Cruz V. F., Waters A. P., McCutchan T. F. Structurally distinct, stage-specific ribosomes occur in Plasmodium. Science. 1987 Nov 13;238(4829):933–937. doi: 10.1126/science.3672135. [DOI] [PubMed] [Google Scholar]
  6. Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Li J., McConkey G. A., Rogers M. J., Waters A. P., McCutchan T. R. Plasmodium: the developmentally regulated ribosome. Exp Parasitol. 1994 Jun;78(4):437–441. doi: 10.1006/expr.1994.1051. [DOI] [PubMed] [Google Scholar]
  8. Li J., Wirtz R. A., McConkey G. A., Sattabongkot J., McCutchan T. F. Transition of Plasmodium vivax ribosome types corresponds to sporozoite differentiation in the mosquito. Mol Biochem Parasitol. 1994 Jun;65(2):283–289. doi: 10.1016/0166-6851(94)90079-5. [DOI] [PubMed] [Google Scholar]
  9. Liebman S. W., Chernoff Y. O., Liu R. The accuracy center of a eukaryotic ribosome. Biochem Cell Biol. 1995 Nov-Dec;73(11-12):1141–1149. doi: 10.1139/o95-123. [DOI] [PubMed] [Google Scholar]
  10. Liu R., Liebman S. W. A translational fidelity mutation in the universally conserved sarcin/ricin domain of 25S yeast ribosomal RNA. RNA. 1996 Mar;2(3):254–263. [PMC free article] [PubMed] [Google Scholar]
  11. Mankin A. S., Leviev I., Garrett R. A. Cross-hypersensitivity effects of mutations in 23 S rRNA yield insight into aminoacyl-tRNA binding. J Mol Biol. 1994 Nov 25;244(2):151–157. doi: 10.1006/jmbi.1994.1715. [DOI] [PubMed] [Google Scholar]
  12. Moazed D., Robertson J. M., Noller H. F. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature. 1988 Jul 28;334(6180):362–364. doi: 10.1038/334362a0. [DOI] [PubMed] [Google Scholar]
  13. Moffat J. G., Timms K. M., Trotman C. N., Tate W. P. Interaction of the release factors with the Escherichia coli ribosome: structurally and functionally-important domains. Biochimie. 1991 Jul-Aug;73(7-8):1113–1120. doi: 10.1016/0300-9084(91)90154-s. [DOI] [PubMed] [Google Scholar]
  14. Murgola E. J., Xu W., Arkov A. L. Mutations at three sites in the Escherichia coli 23S ribosomal RNA binding region for protein L11 cause UGA-specific suppression and conditional lethality. Nucleic Acids Symp Ser. 1995;(33):70–72. [PubMed] [Google Scholar]
  15. Musters W., Conçalves P. M., Boon K., Raué H. A., van Heerikhuizen H., Planta R. J. The conserved GTPase center and variable region V9 from Saccharomyces cerevisiae 26S rRNA can be replaced by their equivalents from other prokaryotes or eukaryotes without detectable loss of ribosomal function. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1469–1473. doi: 10.1073/pnas.88.4.1469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Parent S. A., Fenimore C. M., Bostian K. A. Vector systems for the expression, analysis and cloning of DNA sequences in S. cerevisiae. Yeast. 1985 Dec;1(2):83–138. doi: 10.1002/yea.320010202. [DOI] [PubMed] [Google Scholar]
  17. Powers T., Noller H. F. Allele-specific structure probing of plasmid-derived 16S ribosomal RNA from Escherichia coli. Gene. 1993 Jan 15;123(1):75–80. doi: 10.1016/0378-1119(93)90542-b. [DOI] [PubMed] [Google Scholar]
  18. Rogers M. J., Bukhman Y. V., McCutchan T. F., Draper D. E. Interaction of thiostrepton with an RNA fragment derived from the plastid-encoded ribosomal RNA of the malaria parasite. RNA. 1997 Aug;3(8):815–820. [PMC free article] [PubMed] [Google Scholar]
  19. Rogers M. J., Gutell R. R., Damberger S. H., Li J., McConkey G. A., Waters A. P., McCutchan T. F. Structural features of the large subunit rRNA expressed in Plasmodium falciparum sporozoites that distinguish it from the asexually expressed subunit rRNA. RNA. 1996 Feb;2(2):134–145. [PMC free article] [PubMed] [Google Scholar]
  20. Rogers M. J., McConkey G. A., Li J., McCutchan T. F. The ribosomal DNA loci in Plasmodium falciparum accumulate mutations independently. J Mol Biol. 1995 Dec 15;254(5):881–891. doi: 10.1006/jmbi.1995.0663. [DOI] [PubMed] [Google Scholar]
  21. Rosendahl G., Douthwaite S. Ribosomal proteins L11 and L10.(L12)4 and the antibiotic thiostrepton interact with overlapping regions of the 23 S rRNA backbone in the ribosomal GTPase centre. J Mol Biol. 1993 Dec 20;234(4):1013–1020. doi: 10.1006/jmbi.1993.1655. [DOI] [PubMed] [Google Scholar]
  22. Rosendahl G., Douthwaite S. The antibiotics micrococcin and thiostrepton interact directly with 23S rRNA nucleotides 1067A and 1095A. Nucleic Acids Res. 1994 Feb 11;22(3):357–363. doi: 10.1093/nar/22.3.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Saarma U., Remme J., Ehrenberg M., Bilgin N. An A to U transversion at position 1067 of 23 S rRNA from Escherichia coli impairs EF-Tu and EF-G function. J Mol Biol. 1997 Sep 26;272(3):327–335. doi: 10.1006/jmbi.1997.1254. [DOI] [PubMed] [Google Scholar]
  24. Schmitt M. E., Brown T. A., Trumpower B. L. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 1990 May 25;18(10):3091–3092. doi: 10.1093/nar/18.10.3091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Thompson J., Musters W., Cundliffe E., Dahlberg A. E. Replacement of the L11 binding region within E.coli 23S ribosomal RNA with its homologue from yeast: in vivo and in vitro analysis of hybrid ribosomes altered in the GTPase centre. EMBO J. 1993 Apr;12(4):1499–1504. doi: 10.1002/j.1460-2075.1993.tb05793.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Waters A. P., Syin C., McCutchan T. F. Developmental regulation of stage-specific ribosome populations in Plasmodium. Nature. 1989 Nov 23;342(6248):438–440. doi: 10.1038/342438a0. [DOI] [PubMed] [Google Scholar]
  27. Waters A. P., White W., McCutchan T. F. The structure of the large subunit rRNA expressed in blood stages of Plasmodium falciparum. Mol Biochem Parasitol. 1995 Jun;72(1-2):227–237. doi: 10.1016/0166-6851(94)00077-z. [DOI] [PubMed] [Google Scholar]
  28. Wellems T. E., Walliker D., Smith C. L., do Rosario V. E., Maloy W. L., Howard R. J., Carter R., McCutchan T. F. A histidine-rich protein gene marks a linkage group favored strongly in a genetic cross of Plasmodium falciparum. Cell. 1987 Jun 5;49(5):633–642. doi: 10.1016/0092-8674(87)90539-3. [DOI] [PubMed] [Google Scholar]
  29. Zhu J. D., Waters A. P., Appiah A., McCutchan T. F., Lal A. A., Hollingdale M. R. Stage-specific ribosomal RNA expression switches during sporozoite invasion of hepatocytes. J Biol Chem. 1990 Jul 25;265(21):12740–12744. [PubMed] [Google Scholar]
  30. el-Baradi T. T., de Regt V. C., Einerhand S. W., Teixido J., Planta R. J., Ballesta J. P., Raué H. A. Ribosomal proteins EL11 from Escherichia coli and L15 from Saccharomyces cerevisiae bind to the same site in both yeast 26 S and mouse 28 S rRNA. J Mol Biol. 1987 Jun 20;195(4):909–917. doi: 10.1016/0022-2836(87)90494-3. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES