Skip to main content
RNA logoLink to RNA
. 1998 Dec;4(12):1481–1492. doi: 10.1017/s1355838298981237

In vitro selection of the Naegleria GIR1 ribozyme identifies three base changes that dramatically improve activity.

E Jabri 1, T R Cech 1
PMCID: PMC1369719  PMID: 9848647

Abstract

NanGIR1 is a member of a new class of group I ribozymes whose putative biological function is site-specific hydrolysis at an internal processing site (IPS). We have previously shown that NanGIR1 requires 1 M KCl for maximal activity, which is nevertheless slow (0.03 min(-1)). We used in vitro selection and an RNA pool with approximately nine mutations per molecule to select for faster hydrolysis at the IPS in 100 mM KCl. After eight rounds of selection, GIR1 variants were isolated that catalyzed hydrolysis at 300-fold greater rates than NanGIR1 RNA. Although not required by the selection, many of the resultant RNAs had increased thermal stability relative to the parent RNA, and had a more compact structure as evidenced by their faster migration in native gels. Although a wide spectrum of mutations was found in generation 8 clones, only two mutations, U149C and U153C, were common to greater than 95% of the molecules. These and one other mutation, G32A, are sufficient to increase activity 50-fold. All three mutations lie within or proximal to the P15 pseudoknot, a structural signature of GIR1 RNAs that was previously shown to be important for catalytic activity. Overall, our findings show that variants of the Naegleria GIR1 ribozyme with dramatically improved activity lie very close to the natural GIR1 in sequence space. Furthermore, the selection for higher activity appeared to select for increased structural stability.

Full Text

The Full Text of this article is available as a PDF (930.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banerjee A. R., Jaeger J. A., Turner D. H. Thermal unfolding of a group I ribozyme: the low-temperature transition is primarily disruption of tertiary structure. Biochemistry. 1993 Jan 12;32(1):153–163. doi: 10.1021/bi00052a021. [DOI] [PubMed] [Google Scholar]
  2. Bartel D. P., Szostak J. W. Isolation of new ribozymes from a large pool of random sequences [see comment]. Science. 1993 Sep 10;261(5127):1411–1418. doi: 10.1126/science.7690155. [DOI] [PubMed] [Google Scholar]
  3. Cadwell R. C., Joyce G. F. Randomization of genes by PCR mutagenesis. PCR Methods Appl. 1992 Aug;2(1):28–33. doi: 10.1101/gr.2.1.28. [DOI] [PubMed] [Google Scholar]
  4. Cao Y., Woodson S. A. Destabilizing effect of an rRNA stem-loop on an attenuator hairpin in the 5' exon of the Tetrahymena pre-rRNA. RNA. 1998 Aug;4(8):901–914. doi: 10.1017/s1355838298980621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Costa M., Michel F. Rules for RNA recognition of GNRA tetraloops deduced by in vitro selection: comparison with in vivo evolution. EMBO J. 1997 Jun 2;16(11):3289–3302. doi: 10.1093/emboj/16.11.3289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Decatur W. A., Einvik C., Johansen S., Vogt V. M. Two group I ribozymes with different functions in a nuclear rDNA intron. EMBO J. 1995 Sep 15;14(18):4558–4568. doi: 10.1002/j.1460-2075.1995.tb00135.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Downs W. D., Cech T. R. Kinetic pathway for folding of the Tetrahymena ribozyme revealed by three UV-inducible crosslinks. RNA. 1996 Jul;2(7):718–732. [PMC free article] [PubMed] [Google Scholar]
  8. Einvik C., Decatur W. A., Embley T. M., Vogt V. M., Johansen S. Naegleria nucleolar introns contain two group I ribozymes with different functions in RNA splicing and processing. RNA. 1997 Jul;3(7):710–720. [PMC free article] [PubMed] [Google Scholar]
  9. Einvik C., Nielsen H., Westhof E., Michel F., Johansen S. Group I-like ribozymes with a novel core organization perform obligate sequential hydrolytic cleavages at two processing sites. RNA. 1998 May;4(5):530–541. doi: 10.1017/s1355838298971758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frank D. N., Pace N. R. In vitro selection for altered divalent metal specificity in the RNase P RNA. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14355–14360. doi: 10.1073/pnas.94.26.14355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Green R., Szostak J. W. In vitro genetic analysis of the hinge region between helical elements P5-P4-P6 and P7-P3-P8 in the sunY group I self-splicing intron. J Mol Biol. 1994 Jan 7;235(1):140–155. doi: 10.1016/s0022-2836(05)80022-1. [DOI] [PubMed] [Google Scholar]
  12. Holbrook S. R., Cheong C., Tinoco I., Jr, Kim S. H. Crystal structure of an RNA double helix incorporating a track of non-Watson-Crick base pairs. Nature. 1991 Oct 10;353(6344):579–581. doi: 10.1038/353579a0. [DOI] [PubMed] [Google Scholar]
  13. Jabri E., Aigner S., Cech T. R. Kinetic and secondary structure analysis of Naegleria andersoni GIR1, a group I ribozyme whose putative biological function is site-specific hydrolysis. Biochemistry. 1997 Dec 23;36(51):16345–16354. doi: 10.1021/bi9718595. [DOI] [PubMed] [Google Scholar]
  14. Jaeger L., Westhof E., Michel F. Monitoring of the cooperative unfolding of the sunY group I intron of bacteriophage T4. The active form of the sunY ribozyme is stabilized by multiple interactions with 3' terminal intron components. J Mol Biol. 1993 Nov 20;234(2):331–346. doi: 10.1006/jmbi.1993.1590. [DOI] [PubMed] [Google Scholar]
  15. Jencks W. P. Binding energy, specificity, and enzymic catalysis: the circe effect. Adv Enzymol Relat Areas Mol Biol. 1975;43:219–410. doi: 10.1002/9780470122884.ch4. [DOI] [PubMed] [Google Scholar]
  16. Laing L. G., Draper D. E. Thermodynamics of RNA folding in a conserved ribosomal RNA domain. J Mol Biol. 1994 Apr 15;237(5):560–576. doi: 10.1006/jmbi.1994.1255. [DOI] [PubMed] [Google Scholar]
  17. Lehman N., Joyce G. F. Evolution in vitro of an RNA enzyme with altered metal dependence. Nature. 1993 Jan 14;361(6408):182–185. doi: 10.1038/361182a0. [DOI] [PubMed] [Google Scholar]
  18. Lehman N., Joyce G. F. Evolution in vitro: analysis of a lineage of ribozymes. Curr Biol. 1993;3(11):723–734. doi: 10.1016/0960-9822(93)90019-k. [DOI] [PubMed] [Google Scholar]
  19. Murphy F. L., Wang Y. H., Griffith J. D., Cech T. R. Coaxially stacked RNA helices in the catalytic center of the Tetrahymena ribozyme. Science. 1994 Sep 16;265(5179):1709–1712. doi: 10.1126/science.8085157. [DOI] [PubMed] [Google Scholar]
  20. Pan J., Woodson S. A. Folding intermediates of a self-splicing RNA: mispairing of the catalytic core. J Mol Biol. 1998 Jul 24;280(4):597–609. doi: 10.1006/jmbi.1998.1901. [DOI] [PubMed] [Google Scholar]
  21. Puglisi J. D., Tinoco I., Jr Absorbance melting curves of RNA. Methods Enzymol. 1989;180:304–325. doi: 10.1016/0076-6879(89)80108-9. [DOI] [PubMed] [Google Scholar]
  22. Quigley G. J., Rich A. Structural domains of transfer RNA molecules. Science. 1976 Nov 19;194(4267):796–806. doi: 10.1126/science.790568. [DOI] [PubMed] [Google Scholar]
  23. Rocheleau G. A., Woodson S. A. Enhanced self-splicing of Physarum polycephalum intron 3 by a second group I intron. RNA. 1995 Apr;1(2):183–193. [PMC free article] [PubMed] [Google Scholar]
  24. Szewczak A. A., Cech T. R. An RNA internal loop acts as a hinge to facilitate ribozyme folding and catalysis. RNA. 1997 Aug;3(8):838–849. [PMC free article] [PubMed] [Google Scholar]
  25. Tanner M., Cech T. Activity and thermostability of the small self-splicing group I intron in the pre-tRNA(lle) of the purple bacterium Azoarcus. RNA. 1996 Jan;2(1):74–83. [PMC free article] [PubMed] [Google Scholar]
  26. Tarasow T. M., Tarasow S. L., Eaton B. E. RNA-catalysed carbon-carbon bond formation. Nature. 1997 Sep 4;389(6646):54–57. doi: 10.1038/37950. [DOI] [PubMed] [Google Scholar]
  27. Treiber D. K., Rook M. S., Zarrinkar P. P., Williamson J. R. Kinetic intermediates trapped by native interactions in RNA folding. Science. 1998 Mar 20;279(5358):1943–1946. doi: 10.1126/science.279.5358.1943. [DOI] [PubMed] [Google Scholar]
  28. Tsang J., Joyce G. F. Evolutionary optimization of the catalytic properties of a DNA-cleaving ribozyme. Biochemistry. 1994 May 17;33(19):5966–5973. doi: 10.1021/bi00185a038. [DOI] [PubMed] [Google Scholar]
  29. White S. A., Nilges M., Huang A., Brünger A. T., Moore P. B. NMR analysis of helix I from the 5S RNA of Escherichia coli. Biochemistry. 1992 Feb 18;31(6):1610–1621. doi: 10.1021/bi00121a005. [DOI] [PubMed] [Google Scholar]
  30. Woodson S. A. Exon sequences distant from the splice junction are required for efficient self-splicing of the Tetrahymena IVS. Nucleic Acids Res. 1992 Aug 11;20(15):4027–4032. doi: 10.1093/nar/20.15.4027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zarrinkar P. P., Williamson J. R. The kinetic folding pathway of the Tetrahymena ribozyme reveals possible similarities between RNA and protein folding. Nat Struct Biol. 1996 May;3(5):432–438. doi: 10.1038/nsb0596-432. [DOI] [PubMed] [Google Scholar]
  32. Zhang B., Cech T. R. Peptide bond formation by in vitro selected ribozymes. Nature. 1997 Nov 6;390(6655):96–100. doi: 10.1038/36375. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES