Abstract
Titrations of Escherichia coli translation initiation factor IF3, isotopically labeled with 15N, with 30S ribosomal subunits were followed by NMR by recording two-dimensional (15N,1H)-HSQC spectra. In the titrations, intensity changes are observed for cross peaks belonging to amides of individual amino acids. At low concentrations of ribosomal subunits, only resonances belonging to amino acids of the C-domain of IF3 are affected, whereas all those attributed to the N-domain are still visible. Upon addition of a larger amount of 30S subunits cross peaks belonging to residues of the N-terminal domain of the protein are also selectively affected. Our results demonstrate that the two domains of IF3 are functionally independent, each interacting with a different affinity with the ribosomal subunits, thus allowing the identification of the individual residues of the two domains involved in this interaction. Overall, the C-domain interacts with the 30S subunits primarily through some of its loops and alpha-helices and the residues involved in ribosome binding are distributed rather symmetrically over a fairly large surface of the domain, while the N-domain interacts mainly via a small number of residues distributed asymmetrically in this domain. The spatial organization of the active sites of IF3, emerging through the comparison of the present data with the previous chemical modification and mutagenesis data, is discussed in light of the ribosomal localization of IF3 and of the mechanism of action of this factor.
Full Text
The Full Text of this article is available as a PDF (520.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AEvarsson A., Brazhnikov E., Garber M., Zheltonosova J., Chirgadze Y., al-Karadaghi S., Svensson L. A., Liljas A. Three-dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilus. EMBO J. 1994 Aug 15;13(16):3669–3677. doi: 10.1002/j.1460-2075.1994.tb06676.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allain F. H., Howe P. W., Neuhaus D., Varani G. Structural basis of the RNA-binding specificity of human U1A protein. EMBO J. 1997 Sep 15;16(18):5764–5772. doi: 10.1093/emboj/16.18.5764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biou V., Shu F., Ramakrishnan V. X-ray crystallography shows that translational initiation factor IF3 consists of two compact alpha/beta domains linked by an alpha-helix. EMBO J. 1995 Aug 15;14(16):4056–4064. doi: 10.1002/j.1460-2075.1995.tb00077.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brombach M., Pon C. L. The unusual translational initiation codon AUU limits the expression of the infC (initiation factor IF3) gene of Escherichia coli. Mol Gen Genet. 1987 Jun;208(1-2):94–100. doi: 10.1007/BF00330428. [DOI] [PubMed] [Google Scholar]
- Bruhns J., Gualerzi C. Structure--function relationship in Escherichia coli initiation factors: role of tyrosine residues in ribosomal binding and functional activity of IF-3. Biochemistry. 1980 Apr 15;19(8):1670–1676. doi: 10.1021/bi00549a023. [DOI] [PubMed] [Google Scholar]
- Czworkowski J., Wang J., Steitz T. A., Moore P. B. The crystal structure of elongation factor G complexed with GDP, at 2.7 A resolution. EMBO J. 1994 Aug 15;13(16):3661–3668. doi: 10.1002/j.1460-2075.1994.tb06675.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Bellis D., Liveris D., Goss D., Ringquist S., Schwartz I. Structure-function analysis of Escherichia coli translation initiation factor IF3: tyrosine 107 and lysine 110 are required for ribosome binding. Biochemistry. 1992 Dec 8;31(48):11984–11990. doi: 10.1021/bi00163a005. [DOI] [PubMed] [Google Scholar]
- Ehresmann C., Moine H., Mougel M., Dondon J., Grunberg-Manago M., Ebel J. P., Ehresmann B. Cross-linking of initiation factor IF3 to Escherichia coli 30S ribosomal subunit by trans-diamminedichloroplatinum(II): characterization of two cross-linking sites in 16S rRNA; a possible way of functioning for IF3. Nucleic Acids Res. 1986 Jun 25;14(12):4803–4821. doi: 10.1093/nar/14.12.4803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Firpo M. A., Connelly M. B., Goss D. J., Dahlberg A. E. Mutations at two invariant nucleotides in the 3'-minor domain of Escherichia coli 16 S rRNA affecting translational initiation and initiation factor 3 function. J Biol Chem. 1996 Mar 1;271(9):4693–4698. doi: 10.1074/jbc.271.9.4693. [DOI] [PubMed] [Google Scholar]
- Fortier P. L., Schmitter J. M., Garcia C., Dardel F. The N-terminal half of initiation factor IF3 is folded as a stable independent domain. Biochimie. 1994;76(5):376–383. doi: 10.1016/0300-9084(94)90111-2. [DOI] [PubMed] [Google Scholar]
- Garcia C., Fortier P. L., Blanquet S., Lallemand J. Y., Dardel F. Solution structure of the ribosome-binding domain of E. coli translation initiation factor IF3. Homology with the U1A protein of the eukaryotic spliceosome. J Mol Biol. 1995 Nov 24;254(2):247–259. doi: 10.1006/jmbi.1995.0615. [DOI] [PubMed] [Google Scholar]
- Gualerzi C. O., Pon C. L. Initiation of mRNA translation in prokaryotes. Biochemistry. 1990 Jun 26;29(25):5881–5889. doi: 10.1021/bi00477a001. [DOI] [PubMed] [Google Scholar]
- Gualerzi C., Pon C. L., Kaji A. Initiation factor dependent release of aminoacyl-tRNAs from complexes of 30S ribosomal subunits, synthetic polynucleotide and aminoacyl tRNA. Biochem Biophys Res Commun. 1971 Dec 3;45(5):1312–1319. doi: 10.1016/0006-291x(71)90162-8. [DOI] [PubMed] [Google Scholar]
- Gualerzi C., Risuleo G., Pon C. L. Initial rate kinetic analysis of the mechanism of initiation complex formation and the role of initiation factor IF-3. Biochemistry. 1977 Apr 19;16(8):1684–1689. doi: 10.1021/bi00627a025. [DOI] [PubMed] [Google Scholar]
- Haggerty T. J., Lovett S. T. Suppression of recJ mutations of Escherichia coli by mutations in translation initiation factor IF3. J Bacteriol. 1993 Oct;175(19):6118–6125. doi: 10.1128/jb.175.19.6118-6125.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartz D., Binkley J., Hollingsworth T., Gold L. Domains of initiator tRNA and initiation codon crucial for initiator tRNA selection by Escherichia coli IF3. Genes Dev. 1990 Oct;4(10):1790–1800. doi: 10.1101/gad.4.10.1790. [DOI] [PubMed] [Google Scholar]
- Hartz D., McPheeters D. S., Gold L. Selection of the initiator tRNA by Escherichia coli initiation factors. Genes Dev. 1989 Dec;3(12A):1899–1912. doi: 10.1101/gad.3.12a.1899. [DOI] [PubMed] [Google Scholar]
- Holm L., Sander C. Protein structure comparison by alignment of distance matrices. J Mol Biol. 1993 Sep 5;233(1):123–138. doi: 10.1006/jmbi.1993.1489. [DOI] [PubMed] [Google Scholar]
- Klimasauskas S., Kumar S., Roberts R. J., Cheng X. HhaI methyltransferase flips its target base out of the DNA helix. Cell. 1994 Jan 28;76(2):357–369. doi: 10.1016/0092-8674(94)90342-5. [DOI] [PubMed] [Google Scholar]
- Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
- Kycia J. H., Biou V., Shu F., Gerchman S. E., Graziano V., Ramakrishnan V. Prokaryotic translation initiation factor IF3 is an elongated protein consisting of two crystallizable domains. Biochemistry. 1995 May 9;34(18):6183–6187. doi: 10.1021/bi00018a022. [DOI] [PubMed] [Google Scholar]
- La Teana A., Gualerzi C. O., Brimacombe R. From stand-by to decoding site. Adjustment of the mRNA on the 30S ribosomal subunit under the influence of the initiation factors. RNA. 1995 Oct;1(8):772–782. [PMC free article] [PubMed] [Google Scholar]
- La Teana A., Pon C. L., Gualerzi C. O. Translation of mRNAs with degenerate initiation triplet AUU displays high initiation factor 2 dependence and is subject to initiation factor 3 repression. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4161–4165. doi: 10.1073/pnas.90.9.4161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lahm A., Suck D. DNase I-induced DNA conformation. 2 A structure of a DNase I-octamer complex. J Mol Biol. 1991 Dec 5;222(3):645–667. doi: 10.1016/0022-2836(91)90502-w. [DOI] [PubMed] [Google Scholar]
- Lammi M., Pon C. L., Gualerzi C. O. The NH2-terminal cleavage of Escherichia coli translational initiation factor IF3. A mechanism to control the intracellular level of the factor? FEBS Lett. 1987 May 4;215(1):115–121. doi: 10.1016/0014-5793(87)80124-2. [DOI] [PubMed] [Google Scholar]
- McCarthy J. E., Gualerzi C. Translational control of prokaryotic gene expression. Trends Genet. 1990 Mar;6(3):78–85. doi: 10.1016/0168-9525(90)90098-q. [DOI] [PubMed] [Google Scholar]
- Moazed D., Samaha R. R., Gualerzi C., Noller H. F. Specific protection of 16 S rRNA by translational initiation factors. J Mol Biol. 1995 Apr 28;248(2):207–210. doi: 10.1016/s0022-2836(95)80042-5. [DOI] [PubMed] [Google Scholar]
- Moreau M., de Cock E., Fortier P. L., Garcia C., Albaret C., Blanquet S., Lallemand J. Y., Dardel F. Heteronuclear NMR studies of E. coli translation initiation factor IF3. Evidence that the inter-domain region is disordered in solution. J Mol Biol. 1997 Feb 14;266(1):15–22. doi: 10.1006/jmbi.1996.0756. [DOI] [PubMed] [Google Scholar]
- Mueller F., Brimacombe R. A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. II. The RNA-protein interaction data. J Mol Biol. 1997 Aug 29;271(4):545–565. doi: 10.1006/jmbi.1997.1211. [DOI] [PubMed] [Google Scholar]
- Muralikrishna P., Wickstrom E. Escherichia coli initiation factor 3 protein binding to 30S ribosomal subunits alters the accessibility of nucleotides within the conserved central region of 16S rRNA. Biochemistry. 1989 Sep 19;28(19):7505–7510. doi: 10.1021/bi00445a002. [DOI] [PubMed] [Google Scholar]
- Nureki O., Vassylyev D. G., Katayanagi K., Shimizu T., Sekine S., Kigawa T., Miyazawa T., Yokoyama S., Morikawa K. Architectures of class-defining and specific domains of glutamyl-tRNA synthetase. Science. 1995 Mar 31;267(5206):1958–1965. doi: 10.1126/science.7701318. [DOI] [PubMed] [Google Scholar]
- Ohsawa H., Gualerzi C. Structure-function relationship in Escherichia coli initiation factors. Identification of a lysine residue in the ribosomal binding site of initiation factor by site-specific chemical modification with pyridoxal phosphate. J Biol Chem. 1981 May 25;256(10):4905–4912. [PubMed] [Google Scholar]
- Olsson C. L., Graffe M., Springer M., Hershey J. W. Physiological effects of translation initiation factor IF3 and ribosomal protein L20 limitation in Escherichia coli. Mol Gen Genet. 1996 Apr 10;250(6):705–714. doi: 10.1007/BF02172982. [DOI] [PubMed] [Google Scholar]
- Oubridge C., Ito N., Evans P. R., Teo C. H., Nagai K. Crystal structure at 1.92 A resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature. 1994 Dec 1;372(6505):432–438. doi: 10.1038/372432a0. [DOI] [PubMed] [Google Scholar]
- Paci M., Pon C., Gualerzi C. High resolution 1H-n.m.r. study of the interaction between initiation factor IF1 and 30S ribosomal subunits. EMBO J. 1983;2(4):521–526. doi: 10.1002/j.1460-2075.1983.tb01457.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paci M., Pon C., Gualerzi C. The interaction between initiation factor 3 and 30 S ribosomal subunits studied by high-resolution 1H NMR spectroscopy. J Biol Chem. 1985 Jan 25;260(2):887–892. [PubMed] [Google Scholar]
- Pon C. L., Gualerzi C. Effect of initiation factor 3 binding on the 30S ribosomal subunits of Escherichia coli. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4950–4954. doi: 10.1073/pnas.71.12.4950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pon C. L., Pawlik R. T., Gualerzi C. The topographical localization of IF3 on Escherichia coli 30 S ribosomal subunits as a clue to its way of functioning. FEBS Lett. 1982 Jan 25;137(2):163–167. doi: 10.1016/0014-5793(82)80339-6. [DOI] [PubMed] [Google Scholar]
- Pon C., Cannistraro S., Giovane A., Gualerzi C. Structure-function relationship in Escherichia coli initiation factors. Environment of the Cys residue and evidence for a hydrophobic region in initiation factor IF3 by fluorescence and ESR spectroscopy. Arch Biochem Biophys. 1982 Aug;217(1):47–57. doi: 10.1016/0003-9861(82)90477-5. [DOI] [PubMed] [Google Scholar]
- Risuleo G., Gualerzi C., Pon C. Specificity and properties of the destabilization, induced by initiation factor IF-3, of ternary complexes of the 30-S ribosomal subunit, aminoacyl-tRNA and polynucleotides. Eur J Biochem. 1976 Aug 16;67(2):603–613. doi: 10.1111/j.1432-1033.1976.tb10726.x. [DOI] [PubMed] [Google Scholar]
- Sacerdot C., Chiaruttini C., Engst K., Graffe M., Milet M., Mathy N., Dondon J., Springer M. The role of the AUU initiation codon in the negative feedback regulation of the gene for translation initiation factor IF3 in Escherichia coli. Mol Microbiol. 1996 Jul;21(2):331–346. doi: 10.1046/j.1365-2958.1996.6361359.x. [DOI] [PubMed] [Google Scholar]
- Sacerdot C., Fayat G., Dessen P., Springer M., Plumbridge J. A., Grunberg-Manago M., Blanquet S. Sequence of a 1.26-kb DNA fragment containing the structural gene for E.coli initiation factor IF3: presence of an AUU initiator codon. EMBO J. 1982;1(3):311–315. doi: 10.1002/j.1460-2075.1982.tb01166.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schluckebier G., O'Gara M., Saenger W., Cheng X. Universal catalytic domain structure of AdoMet-dependent methyltransferases. J Mol Biol. 1995 Mar 17;247(1):16–20. doi: 10.1006/jmbi.1994.0117. [DOI] [PubMed] [Google Scholar]
- Sette M., van Tilborg P., Spurio R., Kaptein R., Paci M., Gualerzi C. O., Boelens R. The structure of the translational initiation factor IF1 from E.coli contains an oligomer-binding motif. EMBO J. 1997 Mar 17;16(6):1436–1443. doi: 10.1093/emboj/16.6.1436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sussman J. K., Simons E. L., Simons R. W. Escherichia coli translation initiation factor 3 discriminates the initiation codon in vivo. Mol Microbiol. 1996 Jul;21(2):347–360. doi: 10.1046/j.1365-2958.1996.6371354.x. [DOI] [PubMed] [Google Scholar]
- Tapprich W. E., Goss D. J., Dahlberg A. E. Mutation at position 791 in Escherichia coli 16S ribosomal RNA affects processes involved in the initiation of protein synthesis. Proc Natl Acad Sci U S A. 1989 Jul;86(13):4927–4931. doi: 10.1073/pnas.86.13.4927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weston S. A., Lahm A., Suck D. X-ray structure of the DNase I-d(GGTATACC)2 complex at 2.3 A resolution. J Mol Biol. 1992 Aug 20;226(4):1237–1256. doi: 10.1016/0022-2836(92)91064-v. [DOI] [PubMed] [Google Scholar]
- Wintermeyer W., Gualerzi C. Effect of Escherichia coli initiation factors on the kinetics of N-Acphe-tRNAPhe binding to 30S ribosomal subunits. A fluorescence stopped-flow study. Biochemistry. 1983 Feb 1;22(3):690–694. doi: 10.1021/bi00272a025. [DOI] [PubMed] [Google Scholar]
