Skip to main content
RNA logoLink to RNA
. 1999 Jan;5(1):93–101. doi: 10.1017/s1355838299981451

Core sequence in the RNA motif recognized by the ErmE methyltransferase revealed by relaxing the fidelity of the enzyme for its target.

L H Hansen 1, B Vester 1, S Douthwaite 1
PMCID: PMC1369742  PMID: 9917069

Abstract

Under physiological conditions, the ErmE methyltransferase specifically modifies a single adenosine within ribosomal RNA (rRNA), and thereby confers resistance to multiple antibiotics. The adenosine (A2058 in Escherichia coli 23S rRNA) lies within a highly conserved structure, and is methylated efficiently, and with equally high fidelity, in rRNAs from phylogenetically diverse bacteria. However, the fidelity of ErmE is reduced when magnesium is removed, and over twenty new sites of ErmE methylation appear in E. coli 16S and 23S rRNAs. These sites show widely different degrees of reactivity to ErmE. The canonical A2058 site is largely unaffected by magnesium depletion and remains the most reactive site in the rRNA. This suggests that methylation at the new sites results from changes in the RNA substrate rather than the methyltransferase. Chemical probing confirms that the rRNA structure opens upon magnesium depletion, exposing potential new interaction sites to the enzyme. The new ErmE sites show homology with the canonical A2058 site, and have the consensus sequence aNNNcgGAHAg (ErmE methylation occurs exclusively at adenosines (underlined); these are preceded by a guanosine, equivalent to G2057; there is a high preference for the adenosine equivalent to A2060; H is any nucleotide except G; N is any nucleotide; and there are slight preferences for the nucleotides shown in lower case). This consensus is believed to represent the core of the motif that Erm methyltransferases recognize at their canonical A2058 site. The data also reveal constraints on the higher order structure of the motif that affect methyltransferase recognition.

Full Text

The Full Text of this article is available as a PDF (490.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barany F. The TaqI 'star' reaction: strand preferences reveal hydrogen-bond donor and acceptor sites in canonical sequence recognition. Gene. 1988 May 30;65(2):149–165. doi: 10.1016/0378-1119(88)90452-0. [DOI] [PubMed] [Google Scholar]
  2. Bussiere D. E., Muchmore S. W., Dealwis C. G., Schluckebier G., Nienaber V. L., Edalji R. P., Walter K. A., Ladror U. S., Holzman T. F., Abad-Zapatero C. Crystal structure of ErmC', an rRNA methyltransferase which mediates antibiotic resistance in bacteria. Biochemistry. 1998 May 19;37(20):7103–7112. doi: 10.1021/bi973113c. [DOI] [PubMed] [Google Scholar]
  3. Douthwaite S., Powers T., Lee J. Y., Noller H. F. Defining the structural requirements for a helix in 23 S ribosomal RNA that confers erythromycin resistance. J Mol Biol. 1989 Oct 20;209(4):655–665. doi: 10.1016/0022-2836(89)93000-3. [DOI] [PubMed] [Google Scholar]
  4. Douthwalte S., Voldborg B., Hansen L. H., Rosendahl G., Vester B. Recognition determinants for proteins and antibiotics within 23S rRNA. Biochem Cell Biol. 1995 Nov-Dec;73(11-12):1179–1185. doi: 10.1139/o95-127. [DOI] [PubMed] [Google Scholar]
  5. Gutell R. R., Larsen N., Woese C. R. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol Rev. 1994 Mar;58(1):10–26. doi: 10.1128/mr.58.1.10-26.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gutell R. R., Woese C. R. Higher order structural elements in ribosomal RNAs: pseudo-knots and the use of noncanonical pairs. Proc Natl Acad Sci U S A. 1990 Jan;87(2):663–667. doi: 10.1073/pnas.87.2.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Haselman T., Gutell R. R., Jurka J., Fox G. E. Additional Watson-Crick interactions suggest a structural core in large subunit ribosomal RNA. J Biomol Struct Dyn. 1989 Aug;7(1):181–186. doi: 10.1080/07391102.1989.10507759. [DOI] [PubMed] [Google Scholar]
  8. Hsu M., Berg P. Altering the specificity of restriction endonuclease: effect of replacing Mg2+ with Mn2+. Biochemistry. 1978 Jan 10;17(1):131–138. doi: 10.1021/bi00594a019. [DOI] [PubMed] [Google Scholar]
  9. Huber P. W., Wool I. G. Nuclease protection analysis of ribonucleoprotein complexes: use of the cytotoxic ribonuclease alpha-sarcin to determine the binding sites for Escherichia coli ribosomal proteins L5, L18, and L25 on 5S rRNA. Proc Natl Acad Sci U S A. 1984 Jan;81(2):322–326. doi: 10.1073/pnas.81.2.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Katz L., Brown D., Boris K., Tuan J. Expression of the macrolide-lincosamide-streptogramin-B-resistance methylase gene, ermE, from Streptomyces erythraeus in Escherichia coli results in N6-monomethylation and N6,N6-dimethylation of ribosomal RNA. Gene. 1987;55(2-3):319–325. doi: 10.1016/0378-1119(87)90291-5. [DOI] [PubMed] [Google Scholar]
  11. Kovalic D., Giannattasio R. B., Weisblum B. Methylation of minimalist 23S rRNA sequences in vitro by ErmSF (TlrA) N-methyltransferase. Biochemistry. 1995 Dec 5;34(48):15838–15844. doi: 10.1021/bi00048a029. [DOI] [PubMed] [Google Scholar]
  12. Lai C. J., Weisblum B. Altered methylation of ribosomal RNA in an erythromycin-resistant strain of Staphylococcus aureus. Proc Natl Acad Sci U S A. 1971 Apr;68(4):856–860. doi: 10.1073/pnas.68.4.856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Laing L. G., Gluick T. C., Draper D. E. Stabilization of RNA structure by Mg ions. Specific and non-specific effects. J Mol Biol. 1994 Apr 15;237(5):577–587. doi: 10.1006/jmbi.1994.1256. [DOI] [PubMed] [Google Scholar]
  14. Larsen J. E., Gerdes K., Light J., Molin S. Low-copy-number plasmid-cloning vectors amplifiable by derepression of an inserted foreign promoter. Gene. 1984 Apr;28(1):45–54. doi: 10.1016/0378-1119(84)90086-6. [DOI] [PubMed] [Google Scholar]
  15. Moazed D., Stern S., Noller H. F. Rapid chemical probing of conformation in 16 S ribosomal RNA and 30 S ribosomal subunits using primer extension. J Mol Biol. 1986 Feb 5;187(3):399–416. doi: 10.1016/0022-2836(86)90441-9. [DOI] [PubMed] [Google Scholar]
  16. Nasri M., Thomas D. Relaxation of recognition sequence of specific endonuclease HindIII. Nucleic Acids Res. 1986 Jan 24;14(2):811–821. doi: 10.1093/nar/14.2.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Noller H. F. Structure of ribosomal RNA. Annu Rev Biochem. 1984;53:119–162. doi: 10.1146/annurev.bi.53.070184.001003. [DOI] [PubMed] [Google Scholar]
  18. Peattie D. A., Gilbert W. Chemical probes for higher-order structure in RNA. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4679–4682. doi: 10.1073/pnas.77.8.4679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Polisky B., Greene P., Garfin D. E., McCarthy B. J., Goodman H. M., Boyer H. W. Specificity of substrate recognition by the EcoRI restriction endonuclease. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3310–3314. doi: 10.1073/pnas.72.9.3310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sigmund C. D., Ettayebi M., Borden A., Morgan E. A. Antibiotic resistance mutations in ribosomal RNA genes of Escherichia coli. Methods Enzymol. 1988;164:673–690. doi: 10.1016/s0076-6879(88)64077-8. [DOI] [PubMed] [Google Scholar]
  21. Skinner R., Cundliffe E., Schmidt F. J. Site of action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. J Biol Chem. 1983 Oct 25;258(20):12702–12706. [PubMed] [Google Scholar]
  22. Stern S., Moazed D., Noller H. F. Structural analysis of RNA using chemical and enzymatic probing monitored by primer extension. Methods Enzymol. 1988;164:481–489. doi: 10.1016/s0076-6879(88)64064-x. [DOI] [PubMed] [Google Scholar]
  23. Vester B., Douthwaite S. Domain V of 23S rRNA contains all the structural elements necessary for recognition by the ErmE methyltransferase. J Bacteriol. 1994 Nov;176(22):6999–7004. doi: 10.1128/jb.176.22.6999-7004.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vester B., Hansen L. H., Douthwaite S. The conformation of 23S rRNA nucleotide A2058 determines its recognition by the ErmE methyltransferase. RNA. 1995 Jul;1(5):501–509. [PMC free article] [PubMed] [Google Scholar]
  25. Vester B., Nielsen A. K., Hansen L. H., Douthwaite S. ErmE methyltransferase recognition elements in RNA substrates. J Mol Biol. 1998 Sep 18;282(2):255–264. doi: 10.1006/jmbi.1998.2024. [DOI] [PubMed] [Google Scholar]
  26. Weisblum B. Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother. 1995 Mar;39(3):577–585. doi: 10.1128/AAC.39.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yu L., Petros A. M., Schnuchel A., Zhong P., Severin J. M., Walter K., Holzman T. F., Fesik S. W. Solution structure of an rRNA methyltransferase (ErmAM) that confers macrolide-lincosamide-streptogramin antibiotic resistance. Nat Struct Biol. 1997 Jun;4(6):483–489. doi: 10.1038/nsb0697-483. [DOI] [PubMed] [Google Scholar]
  28. Zalacain M., Cundliffe E. Methylation of 23S rRNA caused by tlrA (ermSF), a tylosin resistance determinant from Streptomyces fradiae. J Bacteriol. 1989 Aug;171(8):4254–4260. doi: 10.1128/jb.171.8.4254-4260.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zhong P., Pratt S. D., Edalji R. P., Walter K. A., Holzman T. F., Shivakumar A. G., Katz L. Substrate requirements for ErmC' methyltransferase activity. J Bacteriol. 1995 Aug;177(15):4327–4332. doi: 10.1128/jb.177.15.4327-4332.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES