Abstract
The SelB protein of Escherichia coli is a special elongation factor required for the cotranslational incorporation of the uncommon amino acid selenocysteine into proteins such as formiate dehydrogenases. To do this, SelB binds simultaneously to selenocysteyl-tRNA(Sec) and to an RNA hairpin structure in the mRNA of formiate dehydrogenases located directly 3' of the selenocysteine opal (UGA) codon. The protein is also thought to contain binding sites allowing its interaction with ribosomal proteins and/or rRNA. SelB thus includes specific binding sites for a variety of different RNA molecules. We used an in vitro selection approach with a pool completely randomized at 40 nt to isolate new high-affinity SelB-binding RNA motifs. Our main objective was to investigate which of the various RNA-binding domains in SelB would turn out to be prime targets for aptamer interaction. The resulting sequences were compared with those from a previous SELEX experiment using a degenerate pool of the wild-type formiate dehydrogenase H (fdhF) hairpin sequence (Klug SJ et al., 1997, Proc. Natl. Acad. Sci. USA 94:6676-6681). In four selection cycles an enriched pool of tight SelB-binding aptamers was obtained; sequencing revealed that all aptamers were different in their primary sequence and most bore no recognizable consensus to known RNA motifs. Domain mapping for SelB-binding aptamers showed that despite the different RNA-binding sites in the protein, the vast majority of aptamers bound to the ultimate C-terminus of SelB, the domain responsible for mRNA hairpin binding.
Full Text
The Full Text of this article is available as a PDF (730.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baron C., Heider J., Böck A. Interaction of translation factor SELB with the formate dehydrogenase H selenopolypeptide mRNA. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4181–4185. doi: 10.1073/pnas.90.9.4181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bartel D. P., Zapp M. L., Green M. R., Szostak J. W. HIV-1 Rev regulation involves recognition of non-Watson-Crick base pairs in viral RNA. Cell. 1991 Nov 1;67(3):529–536. doi: 10.1016/0092-8674(91)90527-6. [DOI] [PubMed] [Google Scholar]
- Berry M. J., Banu L., Chen Y. Y., Mandel S. J., Kieffer J. D., Harney J. W., Larsen P. R. Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3' untranslated region. Nature. 1991 Sep 19;353(6341):273–276. doi: 10.1038/353273a0. [DOI] [PubMed] [Google Scholar]
- Berry M. J., Banu L., Larsen P. R. Type I iodothyronine deiodinase is a selenocysteine-containing enzyme. Nature. 1991 Jan 31;349(6308):438–440. doi: 10.1038/349438a0. [DOI] [PubMed] [Google Scholar]
- Böck A., Hilgenfeld R., Tormay P., Wilting R., Kromayer M. Domain structure of the selenocysteine-specific translation factor SelB in prokaryotes. Biomed Environ Sci. 1997 Sep;10(2-3):125–128. [PubMed] [Google Scholar]
- Carey J., Cameron V., de Haseth P. L., Uhlenbeck O. C. Sequence-specific interaction of R17 coat protein with its ribonucleic acid binding site. Biochemistry. 1983 May 24;22(11):2601–2610. doi: 10.1021/bi00280a002. [DOI] [PubMed] [Google Scholar]
- Famulok M., Jenne A. Oligonucleotide libraries--variatio delectat. Curr Opin Chem Biol. 1998 Jun;2(3):320–327. doi: 10.1016/s1367-5931(98)80004-5. [DOI] [PubMed] [Google Scholar]
- Fitzwater T., Polisky B. A SELEX primer. Methods Enzymol. 1996;267:275–301. doi: 10.1016/s0076-6879(96)67019-0. [DOI] [PubMed] [Google Scholar]
- Forchhammer K., Leinfelder W., Böck A. Identification of a novel translation factor necessary for the incorporation of selenocysteine into protein. Nature. 1989 Nov 23;342(6248):453–456. doi: 10.1038/342453a0. [DOI] [PubMed] [Google Scholar]
- Geiger A., Burgstaller P., von der Eltz H., Roeder A., Famulok M. RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Res. 1996 Mar 15;24(6):1029–1036. doi: 10.1093/nar/24.6.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghetti A., Company M., Abelson J. Specificity of Prp24 binding to RNA: a role for Prp24 in the dynamic interaction of U4 and U6 snRNAs. RNA. 1995 Apr;1(2):132–145. [PMC free article] [PubMed] [Google Scholar]
- Gold L., Polisky B., Uhlenbeck O., Yarus M. Diversity of oligonucleotide functions. Annu Rev Biochem. 1995;64:763–797. doi: 10.1146/annurev.bi.64.070195.003555. [DOI] [PubMed] [Google Scholar]
- Hill K. E., Lloyd R. S., Yang J. G., Read R., Burk R. F. The cDNA for rat selenoprotein P contains 10 TGA codons in the open reading frame. J Biol Chem. 1991 Jun 5;266(16):10050–10053. [PubMed] [Google Scholar]
- Hornung V., Hofmann H. P., Sprinzl M. In vitro selected RNA molecules that bind to elongation factor Tu. Biochemistry. 1998 May 19;37(20):7260–7267. doi: 10.1021/bi972969e. [DOI] [PubMed] [Google Scholar]
- Hüttenhofer A., Böck A. Selenocysteine inserting RNA elements modulate GTP hydrolysis of elongation factor SelB. Biochemistry. 1998 Jan 20;37(3):885–890. doi: 10.1021/bi972298k. [DOI] [PubMed] [Google Scholar]
- Hüttenhofer A., Westhof E., Böck A. Solution structure of mRNA hairpins promoting selenocysteine incorporation in Escherichia coli and their base-specific interaction with special elongation factor SELB. RNA. 1996 Apr;2(4):354–366. [PMC free article] [PubMed] [Google Scholar]
- Irvine D., Tuerk C., Gold L. SELEXION. Systematic evolution of ligands by exponential enrichment with integrated optimization by non-linear analysis. J Mol Biol. 1991 Dec 5;222(3):739–761. doi: 10.1016/0022-2836(91)90509-5. [DOI] [PubMed] [Google Scholar]
- Klug S. J., Famulok M. All you wanted to know about SELEX. Mol Biol Rep. 1994;20(2):97–107. doi: 10.1007/BF00996358. [DOI] [PubMed] [Google Scholar]
- Klug S. J., Hüttenhofer A., Kromayer M., Famulok M. In vitro and in vivo characterization of novel mRNA motifs that bind special elongation factor SelB. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6676–6681. doi: 10.1073/pnas.94.13.6676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klug S. J., Hüttenhofer A., Kromayer M., Famulok M. In vitro and in vivo characterization of novel mRNA motifs that bind special elongation factor SelB. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6676–6681. doi: 10.1073/pnas.94.13.6676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kromayer M., Wilting R., Tormay P., Böck A. Domain structure of the prokaryotic selenocysteine-specific elongation factor SelB. J Mol Biol. 1996 Oct 4;262(4):413–420. doi: 10.1006/jmbi.1996.0525. [DOI] [PubMed] [Google Scholar]
- Leinfelder W., Zehelein E., Mandrand-Berthelot M. A., Böck A. Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature. 1988 Feb 25;331(6158):723–725. doi: 10.1038/331723a0. [DOI] [PubMed] [Google Scholar]
- Liu Z., Reches M., Groisman I., Engelberg-Kulka H. The nature of the minimal 'selenocysteine insertion sequence' (SECIS) in Escherichia coli. Nucleic Acids Res. 1998 Feb 15;26(4):896–902. doi: 10.1093/nar/26.4.896. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moazed D., Robertson J. M., Noller H. F. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature. 1988 Jul 28;334(6180):362–364. doi: 10.1038/334362a0. [DOI] [PubMed] [Google Scholar]
- Nazarenko I. A., Uhlenbeck O. C. Defining a smaller RNA substrate for elongation factor Tu. Biochemistry. 1995 Feb 28;34(8):2545–2552. doi: 10.1021/bi00008a019. [DOI] [PubMed] [Google Scholar]
- Osborne Scott E., Ellington Andrew D. Nucleic Acid Selection and the Challenge of Combinatorial Chemistry. Chem Rev. 1997 Apr 1;97(2):349–370. doi: 10.1021/cr960009c. [DOI] [PubMed] [Google Scholar]
- Schneider D., Tuerk C., Gold L. Selection of high affinity RNA ligands to the bacteriophage R17 coat protein. J Mol Biol. 1992 Dec 5;228(3):862–869. doi: 10.1016/0022-2836(92)90870-p. [DOI] [PubMed] [Google Scholar]
- Shannon K. W., Guthrie C. Suppressors of a U4 snRNA mutation define a novel U6 snRNP protein with RNA-binding motifs. Genes Dev. 1991 May;5(5):773–785. doi: 10.1101/gad.5.5.773. [DOI] [PubMed] [Google Scholar]
- Stadtman T. C. Selenium biochemistry. Annu Rev Biochem. 1990;59:111–127. doi: 10.1146/annurev.bi.59.070190.000551. [DOI] [PubMed] [Google Scholar]
- Stern S., Moazed D., Noller H. F. Structural analysis of RNA using chemical and enzymatic probing monitored by primer extension. Methods Enzymol. 1988;164:481–489. doi: 10.1016/s0076-6879(88)64064-x. [DOI] [PubMed] [Google Scholar]
- Tuerk C., Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990 Aug 3;249(4968):505–510. doi: 10.1126/science.2200121. [DOI] [PubMed] [Google Scholar]
- Walczak R., Westhof E., Carbon P., Krol A. A novel RNA structural motif in the selenocysteine insertion element of eukaryotic selenoprotein mRNAs. RNA. 1996 Apr;2(4):367–379. [PMC free article] [PubMed] [Google Scholar]
- Zinoni F., Heider J., Böck A. Features of the formate dehydrogenase mRNA necessary for decoding of the UGA codon as selenocysteine. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4660–4664. doi: 10.1073/pnas.87.12.4660. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zuker M. On finding all suboptimal foldings of an RNA molecule. Science. 1989 Apr 7;244(4900):48–52. doi: 10.1126/science.2468181. [DOI] [PubMed] [Google Scholar]