Skip to main content
RNA logoLink to RNA
. 1999 Nov;5(11):1495–1503. doi: 10.1017/s1355838299991537

A limited number of pseudouridine residues in the human atac spliceosomal UsnRNAs as compared to human major spliceosomal UsnRNAs.

S Massenet 1, C Branlant 1
PMCID: PMC1369871  PMID: 10580478

Abstract

Two forms of spliceosomes were found in higher eukaryotes. The major form contains the U1, U2, U4, U5, and U6 snRNAs; the minor form contains the U11, U12, U4atac, U5, and U6atac snRNAs. Assembly and function of the major form are based on a complex dynamic of UsnRNA-UsnRNA and UsnRNA-pre-mRNA interactions, and the involved UsnRNA segments are highly posttranscriptionally modified in plants and vertebrates. To further characterize the minor form of spliceosomes, we looked for the psi residues in HeLa cells' U11, U12, U4atac, and U6atac snRNAs, using chemical approaches. Four psi residues were detected in total for these four atac UsnRNAs, compared to 20 in their counterparts of the major spliceosomes. The two psi residues detected in U12 are also found in U2 snRNA. One of them belongs to the branch-site-recognition sequence. It forms one of the base pairs that bulge out the A residue, responsible for the nucleophilic attack. Conservation of this strategic psi residue probably reflects a functional role. Another psi residue was detected in a U4atac snRNA segment involved in formation of helix II with U6atac. The fourth one was detected in the additional stem-loop structure present at the 3' end of U6atac snRNA. Differences in psi content of the atac and major UsnRNAs of human cells may participate in the differentiation of the two splicing systems. Based on secondary structure similarity, U2 and U12 snRNAs on the one hand and U4 and U4atac snRNAs on the other hand may share common psi synthases.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agris P. F. The importance of being modified: roles of modified nucleosides and Mg2+ in RNA structure and function. Prog Nucleic Acid Res Mol Biol. 1996;53:79–129. doi: 10.1016/s0079-6603(08)60143-9. [DOI] [PubMed] [Google Scholar]
  2. Bakin A., Ofengand J. Four newly located pseudouridylate residues in Escherichia coli 23S ribosomal RNA are all at the peptidyltransferase center: analysis by the application of a new sequencing technique. Biochemistry. 1993 Sep 21;32(37):9754–9762. doi: 10.1021/bi00088a030. [DOI] [PubMed] [Google Scholar]
  3. Brow D. A., Guthrie C. Spliceosomal RNA U6 is remarkably conserved from yeast to mammals. Nature. 1988 Jul 21;334(6179):213–218. doi: 10.1038/334213a0. [DOI] [PubMed] [Google Scholar]
  4. Datta B., Weiner A. M. Genetic evidence for base pairing between U2 and U6 snRNA in mammalian mRNA splicing. Nature. 1991 Aug 29;352(6338):821–824. doi: 10.1038/352821a0. [DOI] [PubMed] [Google Scholar]
  5. Dietrich R. C., Incorvaia R., Padgett R. A. Terminal intron dinucleotide sequences do not distinguish between U2- and U12-dependent introns. Mol Cell. 1997 Dec;1(1):151–160. doi: 10.1016/s1097-2765(00)80016-7. [DOI] [PubMed] [Google Scholar]
  6. Field D. J., Friesen J. D. Functionally redundant interactions between U2 and U6 spliceosomal snRNAs. Genes Dev. 1996 Feb 15;10(4):489–501. doi: 10.1101/gad.10.4.489. [DOI] [PubMed] [Google Scholar]
  7. Gu J., Patton J. R., Shimba S., Reddy R. Localization of modified nucleotides in Schizosaccharomyces pombe spliceosomal small nuclear RNAs: modified nucleotides are clustered in functionally important regions. RNA. 1996 Sep;2(9):909–918. [PMC free article] [PubMed] [Google Scholar]
  8. Hall S. L., Padgett R. A. Requirement of U12 snRNA for in vivo splicing of a minor class of eukaryotic nuclear pre-mRNA introns. Science. 1996 Mar 22;271(5256):1716–1718. doi: 10.1126/science.271.5256.1716. [DOI] [PubMed] [Google Scholar]
  9. Harada F., Kato N., Nishimura S. The nucleotide sequence of nuclear 4.8S RNA of mouse cells. Biochem Biophys Res Commun. 1980 Aug 14;95(3):1332–1340. doi: 10.1016/0006-291x(80)91620-4. [DOI] [PubMed] [Google Scholar]
  10. Incorvaia R., Padgett R. A. Base pairing with U6atac snRNA is required for 5' splice site activation of U12-dependent introns in vivo. RNA. 1998 Jun;4(6):709–718. doi: 10.1017/s1355838298980207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jackson I. J. A reappraisal of non-consensus mRNA splice sites. Nucleic Acids Res. 1991 Jul 25;19(14):3795–3798. doi: 10.1093/nar/19.14.3795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kolossova I., Padgett R. A. U11 snRNA interacts in vivo with the 5' splice site of U12-dependent (AU-AC) pre-mRNA introns. RNA. 1997 Mar;3(3):227–233. [PMC free article] [PubMed] [Google Scholar]
  13. Krol A., Branlant C., Lazar E., Gallinaro H., Jacob M. Primary and secondary structures of chicken, rat and man nuclear U4 RNAs. Homologies with U1 and U5 RNAs. Nucleic Acids Res. 1981 Jun 25;9(12):2699–2716. doi: 10.1093/nar/9.12.2699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Krämer A. The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu Rev Biochem. 1996;65:367–409. doi: 10.1146/annurev.bi.65.070196.002055. [DOI] [PubMed] [Google Scholar]
  15. Massenet S., Motorin Y., Lafontaine D. L., Hurt E. C., Grosjean H., Branlant C. Pseudouridine mapping in the Saccharomyces cerevisiae spliceosomal U small nuclear RNAs (snRNAs) reveals that pseudouridine synthase pus1p exhibits a dual substrate specificity for U2 snRNA and tRNA. Mol Cell Biol. 1999 Mar;19(3):2142–2154. doi: 10.1128/mcb.19.3.2142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McPheeters D. S., Abelson J. Mutational analysis of the yeast U2 snRNA suggests a structural similarity to the catalytic core of group I introns. Cell. 1992 Nov 27;71(5):819–831. doi: 10.1016/0092-8674(92)90557-s. [DOI] [PubMed] [Google Scholar]
  17. Mougin A., Grégoire A., Banroques J., Ségault V., Fournier R., Brulé F., Chevrier-Miller M., Branlant C. Secondary structure of the yeast Saccharomyces cerevisiae pre-U3A snoRNA and its implication for splicing efficiency. RNA. 1996 Nov;2(11):1079–1093. [PMC free article] [PubMed] [Google Scholar]
  18. Pascolo E., Séraphin B. The branchpoint residue is recognized during commitment complex formation before being bulged out of the U2 snRNA-pre-mRNA duplex. Mol Cell Biol. 1997 Jul;17(7):3469–3476. doi: 10.1128/mcb.17.7.3469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Patton J. R. Pseudouridine formation in small nuclear RNAs. Biochimie. 1994;76(12):1129–1132. doi: 10.1016/0300-9084(94)90041-8. [DOI] [PubMed] [Google Scholar]
  20. Peattie D. A. Direct chemical method for sequencing RNA. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1760–1764. doi: 10.1073/pnas.76.4.1760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Reddy R., Henning D., Epstein P., Busch H. Primary and secondary structure of U2 snRNA. Nucleic Acids Res. 1981 Nov 11;9(21):5645–5658. doi: 10.1093/nar/9.21.5645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sharp P. A., Burge C. B. Classification of introns: U2-type or U12-type. Cell. 1997 Dec 26;91(7):875–879. doi: 10.1016/s0092-8674(00)80479-1. [DOI] [PubMed] [Google Scholar]
  23. Shukla G. C., Padgett R. A. Conservation of functional features of U6atac and U12 snRNAs between vertebrates and higher plants. RNA. 1999 Apr;5(4):525–538. doi: 10.1017/s1355838299982213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sun J. S., Manley J. L. A novel U2-U6 snRNA structure is necessary for mammalian mRNA splicing. Genes Dev. 1995 Apr 1;9(7):843–854. doi: 10.1101/gad.9.7.843. [DOI] [PubMed] [Google Scholar]
  25. Szkukalek A., Myslinski E., Mougin A., Luhrmann R., Branlant C. Phylogenetic conservation of modified nucleotides in the terminal loop 1 of the spliceosomal U5 snRNA. Biochimie. 1995;77(1-2):16–21. doi: 10.1016/0300-9084(96)88099-0. [DOI] [PubMed] [Google Scholar]
  26. Ségault V., Will C. L., Sproat B. S., Lührmann R. In vitro reconstitution of mammalian U2 and U5 snRNPs active in splicing: Sm proteins are functionally interchangeable and are essential for the formation of functional U2 and U5 snRNPs. EMBO J. 1995 Aug 15;14(16):4010–4021. doi: 10.1002/j.1460-2075.1995.tb00072.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tarn W. Y., Steitz J. A. A novel spliceosome containing U11, U12, and U5 snRNPs excises a minor class (AT-AC) intron in vitro. Cell. 1996 Mar 8;84(5):801–811. doi: 10.1016/s0092-8674(00)81057-0. [DOI] [PubMed] [Google Scholar]
  28. Tarn W. Y., Steitz J. A. Highly diverged U4 and U6 small nuclear RNAs required for splicing rare AT-AC introns. Science. 1996 Sep 27;273(5283):1824–1832. doi: 10.1126/science.273.5283.1824. [DOI] [PubMed] [Google Scholar]
  29. Wang W., Krug R. M. U6atac snRNA, the highly divergent counterpart of U6 snRNA, is the specific target that mediates inhibition of AT-AC splicing by the influenza virus NS1 protein. RNA. 1998 Jan;4(1):55–64. [PMC free article] [PubMed] [Google Scholar]
  30. Wassarman K. M., Steitz J. A. The low-abundance U11 and U12 small nuclear ribonucleoproteins (snRNPs) interact to form a two-snRNP complex. Mol Cell Biol. 1992 Mar;12(3):1276–1285. doi: 10.1128/mcb.12.3.1276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wu J. A., Manley J. L. Base pairing between U2 and U6 snRNAs is necessary for splicing of a mammalian pre-mRNA. Nature. 1991 Aug 29;352(6338):818–821. doi: 10.1038/352818a0. [DOI] [PubMed] [Google Scholar]
  32. Wu Q., Krainer A. R. AT-AC pre-mRNA splicing mechanisms and conservation of minor introns in voltage-gated ion channel genes. Mol Cell Biol. 1999 May;19(5):3225–3236. doi: 10.1128/mcb.19.5.3225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yan D., Ares M., Jr Invariant U2 RNA sequences bordering the branchpoint recognition region are essential for interaction with yeast SF3a and SF3b subunits. Mol Cell Biol. 1996 Mar;16(3):818–828. doi: 10.1128/mcb.16.3.818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yu Y. T., Shu M. D., Steitz J. A. Modifications of U2 snRNA are required for snRNP assembly and pre-mRNA splicing. EMBO J. 1998 Oct 1;17(19):5783–5795. doi: 10.1093/emboj/17.19.5783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yu Y. T., Steitz J. A. Site-specific crosslinking of mammalian U11 and u6atac to the 5' splice site of an AT-AC intron. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6030–6035. doi: 10.1073/pnas.94.12.6030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zerby D. B., Patton J. R. Metabolism of pre-messenger RNA splicing cofactors: modification of U6 RNA is dependent on its interaction with U4 RNA. Nucleic Acids Res. 1996 Sep 15;24(18):3583–3589. doi: 10.1093/nar/24.18.3583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zerby D. B., Patton J. R. Modification of human U4 RNA requires U6 RNA and multiple pseudouridine synthases. Nucleic Acids Res. 1997 Dec 1;25(23):4808–4815. doi: 10.1093/nar/25.23.4808. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES