Skip to main content
RNA logoLink to RNA
. 2000 Jan;6(1):9–15. doi: 10.1017/s1355838200992082

On the wobble GoU and related pairs.

B Masquida 1, E Westhof 1
PMCID: PMC1369889  PMID: 10668794

Abstract

The wobble GoU pairs have been implicated in several biological processes where RNA molecules play a key role. We review the geometrical and conformational properties of wobble GoU pairs on the basis of available crystal structures of RNAs at high resolution. The similarities with the wobble A+oC pairs and UoU pairs are illustrated, while the differences with the recently discovered bifurcated G x U pairs are contrasted.

Full Text

The Full Text of this article is available as a PDF (256.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allain F. H., Varani G. Divalent metal ion binding to a conserved wobble pair defining the upstream site of cleavage of group I self-splicing introns. Nucleic Acids Res. 1995 Feb 11;23(3):341–350. doi: 10.1093/nar/23.3.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allain F. H., Varani G. Structure of the P1 helix from group I self-splicing introns. J Mol Biol. 1995 Jul 14;250(3):333–353. doi: 10.1006/jmbi.1995.0381. [DOI] [PubMed] [Google Scholar]
  3. Auffinger P., Westhof E. Hydration of RNA base pairs. J Biomol Struct Dyn. 1998 Dec;16(3):693–707. doi: 10.1080/07391102.1998.10508281. [DOI] [PubMed] [Google Scholar]
  4. Auffinger P., Westhof E. Singly and bifurcated hydrogen-bonded base-pairs in tRNA anticodon hairpins and ribozymes. J Mol Biol. 1999 Sep 24;292(3):467–483. doi: 10.1006/jmbi.1999.3080. [DOI] [PubMed] [Google Scholar]
  5. Baeyens K. J., De Bondt H. L., Holbrook S. R. Structure of an RNA double helix including uracil-uracil base pairs in an internal loop. Nat Struct Biol. 1995 Jan;2(1):56–62. doi: 10.1038/nsb0195-56. [DOI] [PubMed] [Google Scholar]
  6. Been M. D., Wickham G. S. Self-cleaving ribozymes of hepatitis delta virus RNA. Eur J Biochem. 1997 Aug 1;247(3):741–753. doi: 10.1111/j.1432-1033.1997.00741.x. [DOI] [PubMed] [Google Scholar]
  7. Bevilacqua P. C., Li Y., Turner D. H. Fluorescence-detected stopped flow with a pyrene labeled substrate reveals that guanosine facilitates docking of the 5' cleavage site into a high free energy binding mode in the Tetrahymena ribozyme. Biochemistry. 1994 Sep 20;33(37):11340–11348. doi: 10.1021/bi00203a032. [DOI] [PubMed] [Google Scholar]
  8. Biswas R., Sundaralingam M. Crystal structure of r(GUGUGUA)dC with tandem G x U/U x G wobble pairs with strand slippage. J Mol Biol. 1997 Jul 18;270(3):511–519. doi: 10.1006/jmbi.1997.1118. [DOI] [PubMed] [Google Scholar]
  9. Biswas R., Wahl M. C., Ban C., Sundaralingam M. Crystal structure of an alternating octamer r(GUAUGUA)dC with adjacent G x U wobble pairs. J Mol Biol. 1997 Apr 18;267(5):1149–1156. doi: 10.1006/jmbi.1997.0936. [DOI] [PubMed] [Google Scholar]
  10. Burgstaller P., Hermann T., Huber C., Westhof E., Famulok M. Isoalloxazine derivatives promote photocleavage of natural RNAs at G.U base pairs embedded within helices. Nucleic Acids Res. 1997 Oct 15;25(20):4018–4027. doi: 10.1093/nar/25.20.4018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bénard L., Mathy N., Grunberg-Manago M., Ehresmann B., Ehresmann C., Portier C. Identification in a pseudoknot of a U.G motif essential for the regulation of the expression of ribosomal protein S15. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2564–2567. doi: 10.1073/pnas.95.5.2564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cate J. H., Doudna J. A. Metal-binding sites in the major groove of a large ribozyme domain. Structure. 1996 Oct 15;4(10):1221–1229. doi: 10.1016/s0969-2126(96)00129-3. [DOI] [PubMed] [Google Scholar]
  13. Cavarelli J., Eriani G., Rees B., Ruff M., Boeglin M., Mitschler A., Martin F., Gangloff J., Thierry J. C., Moras D. The active site of yeast aspartyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction. EMBO J. 1994 Jan 15;13(2):327–337. doi: 10.1002/j.1460-2075.1994.tb06265.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cech T. R., Zaug A. J., Grabowski P. J. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell. 1981 Dec;27(3 Pt 2):487–496. doi: 10.1016/0092-8674(81)90390-1. [DOI] [PubMed] [Google Scholar]
  15. Chang K. Y., Varani G., Bhattacharya S., Choi H., McClain W. H. Correlation of deformability at a tRNA recognition site and aminoacylation specificity. Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):11764–11769. doi: 10.1073/pnas.96.21.11764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Chow C. S., Barton J. K. Recognition of G-U mismatches by tris(4,7-diphenyl-1,10-phenanthroline)rhodium(III). Biochemistry. 1992 Jun 23;31(24):5423–5429. doi: 10.1021/bi00139a001. [DOI] [PubMed] [Google Scholar]
  17. Correll C. C., Freeborn B., Moore P. B., Steitz T. A. Metals, motifs, and recognition in the crystal structure of a 5S rRNA domain. Cell. 1997 Nov 28;91(5):705–712. doi: 10.1016/s0092-8674(00)80457-2. [DOI] [PubMed] [Google Scholar]
  18. Crick F. H. Codon--anticodon pairing: the wobble hypothesis. J Mol Biol. 1966 Aug;19(2):548–555. doi: 10.1016/s0022-2836(66)80022-0. [DOI] [PubMed] [Google Scholar]
  19. Dickerson R. E. DNA bending: the prevalence of kinkiness and the virtues of normality. Nucleic Acids Res. 1998 Apr 15;26(8):1906–1926. doi: 10.1093/nar/26.8.1906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Doudna J. A., Cormack B. P., Szostak J. W. RNA structure, not sequence, determines the 5' splice-site specificity of a group I intron. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7402–7406. doi: 10.1073/pnas.86.19.7402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Frugier M., Schimmel P. Subtle atomic group discrimination in the RNA minor groove. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11291–11294. doi: 10.1073/pnas.94.21.11291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gautheret D., Konings D., Gutell R. R. G.U base pairing motifs in ribosomal RNA. RNA. 1995 Oct;1(8):807–814. [PMC free article] [PubMed] [Google Scholar]
  23. Giese M. R., Betschart K., Dale T., Riley C. K., Rowan C., Sprouse K. J., Serra M. J. Stability of RNA hairpins closed by wobble base pairs. Biochemistry. 1998 Jan 27;37(4):1094–1100. doi: 10.1021/bi972050v. [DOI] [PubMed] [Google Scholar]
  24. He L., Kierzek R., SantaLucia J., Jr, Walter A. E., Turner D. H. Nearest-neighbor parameters for G.U mismatches: [formula; see text] is destabilizing in the contexts [formula; see text] and [formula; see text] but stabilizing in [formula; see text]. Biochemistry. 1991 Nov 19;30(46):11124–11132. doi: 10.1021/bi00110a015. [DOI] [PubMed] [Google Scholar]
  25. Hermann T., Westhof E. Exploration of metal ion binding sites in RNA folds by Brownian-dynamics simulations. Structure. 1998 Oct 15;6(10):1303–1314. doi: 10.1016/s0969-2126(98)00130-0. [DOI] [PubMed] [Google Scholar]
  26. Holbrook S. R., Cheong C., Tinoco I., Jr, Kim S. H. Crystal structure of an RNA double helix incorporating a track of non-Watson-Crick base pairs. Nature. 1991 Oct 10;353(6344):579–581. doi: 10.1038/353579a0. [DOI] [PubMed] [Google Scholar]
  27. Hou Y. M., Schimmel P. A simple structural feature is a major determinant of the identity of a transfer RNA. Nature. 1988 May 12;333(6169):140–145. doi: 10.1038/333140a0. [DOI] [PubMed] [Google Scholar]
  28. Jang S. B., Hung L. W., Chi Y. I., Holbrook E. L., Carter R. J., Holbrook S. R. Structure of an RNA internal loop consisting of tandem C-A+ base pairs. Biochemistry. 1998 Aug 25;37(34):11726–11731. doi: 10.1021/bi980758j. [DOI] [PubMed] [Google Scholar]
  29. Lavery R., Sklenar H. The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. J Biomol Struct Dyn. 1988 Aug;6(1):63–91. doi: 10.1080/07391102.1988.10506483. [DOI] [PubMed] [Google Scholar]
  30. Leontis N. B., Westhof E. Conserved geometrical base-pairing patterns in RNA. Q Rev Biophys. 1998 Nov;31(4):399–455. doi: 10.1017/s0033583599003479. [DOI] [PubMed] [Google Scholar]
  31. Leontis N. B., Westhof E. The 5S rRNA loop E: chemical probing and phylogenetic data versus crystal structure. RNA. 1998 Sep;4(9):1134–1153. doi: 10.1017/s1355838298980566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lietzke S. E., Barnes C. L., Berglund J. A., Kundrot C. E. The structure of an RNA dodecamer shows how tandem U-U base pairs increase the range of stable RNA structures and the diversity of recognition sites. Structure. 1996 Aug 15;4(8):917–930. doi: 10.1016/s0969-2126(96)00099-8. [DOI] [PubMed] [Google Scholar]
  33. McClain W. H., Chen Y. M., Foss K., Schneider J. Association of transfer RNA acceptor identity with a helical irregularity. Science. 1988 Dec 23;242(4886):1681–1684. doi: 10.1126/science.2462282. [DOI] [PubMed] [Google Scholar]
  34. Michel F., Westhof E. Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol. 1990 Dec 5;216(3):585–610. doi: 10.1016/0022-2836(90)90386-Z. [DOI] [PubMed] [Google Scholar]
  35. Mizuno H., Sundaralingam M. Stacking of Crick Wobble pair and Watson-Crick pair: stability rules of G-U pairs at ends of helical stems in tRNAs and the relation to codon-anticodon Wobble interaction. Nucleic Acids Res. 1978 Nov;5(11):4451–4461. doi: 10.1093/nar/5.11.4451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Mueller U., Schübel H., Sprinzl M., Heinemann U. Crystal structure of acceptor stem of tRNA(Ala) from Escherichia coli shows unique G.U wobble base pair at 1.16 A resolution. RNA. 1999 May;5(5):670–677. doi: 10.1017/s1355838299982304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pan B., Mitra S. N., Sundaralingam M. Structure of a 16-mer RNA duplex r(GCAGACUUAAAUCUGC)2 with wobble C.A+ mismatches. J Mol Biol. 1998 Nov 13;283(5):977–984. doi: 10.1006/jmbi.1998.2140. [DOI] [PubMed] [Google Scholar]
  38. Park S. J., Hou Y. M., Schimmel P. A single base pair affects binding and catalytic parameters in the molecular recognition of a transfer RNA. Biochemistry. 1989 Mar 21;28(6):2740–2746. doi: 10.1021/bi00432a056. [DOI] [PubMed] [Google Scholar]
  39. Rould M. A., Perona J. J., Söll D., Steitz T. A. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution. Science. 1989 Dec 1;246(4934):1135–1142. doi: 10.1126/science.2479982. [DOI] [PubMed] [Google Scholar]
  40. Rousset F., Pélandakis M., Solignac M. Evolution of compensatory substitutions through G.U intermediate state in Drosophila rRNA. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10032–10036. doi: 10.1073/pnas.88.22.10032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Seeman N. C., Rosenberg J. M., Suddath F. L., Kim J. J., Rich A. RNA double-helical fragments at atomic resolution. I. The crystal and molecular structure of sodium adenylyl-3',5'-uridine hexahydrate. J Mol Biol. 1976 Jun 14;104(1):109–144. doi: 10.1016/0022-2836(76)90005-x. [DOI] [PubMed] [Google Scholar]
  42. Shi K., Wahl M., Sundaralingam M. Crystal structure of an RNA duplex r(G GCGC CC)2 with non-adjacent G*U base pairs. Nucleic Acids Res. 1999 May 15;27(10):2196–2201. doi: 10.1093/nar/27.10.2196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Strobel S. A., Cech T. R. Minor groove recognition of the conserved G.U pair at the Tetrahymena ribozyme reaction site. Science. 1995 Feb 3;267(5198):675–679. doi: 10.1126/science.7839142. [DOI] [PubMed] [Google Scholar]
  44. Tanner N. K., Schaff S., Thill G., Petit-Koskas E., Crain-Denoyelle A. M., Westhof E. A three-dimensional model of hepatitis delta virus ribozyme based on biochemical and mutational analyses. Curr Biol. 1994 Jun 1;4(6):488–498. doi: 10.1016/s0960-9822(00)00109-3. [DOI] [PubMed] [Google Scholar]
  45. Tinoco I., Jr, Uhlenbeck O. C., Levine M. D. Estimation of secondary structure in ribonucleic acids. Nature. 1971 Apr 9;230(5293):362–367. doi: 10.1038/230362a0. [DOI] [PubMed] [Google Scholar]
  46. Trikha J., Filman D. J., Hogle J. M. Crystal structure of a 14 bp RNA duplex with non-symmetrical tandem GxU wobble base pairs. Nucleic Acids Res. 1999 Apr 1;27(7):1728–1739. doi: 10.1093/nar/27.7.1728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Varani G., Cheong C., Tinoco I., Jr Structure of an unusually stable RNA hairpin. Biochemistry. 1991 Apr 2;30(13):3280–3289. doi: 10.1021/bi00227a016. [DOI] [PubMed] [Google Scholar]
  48. Westhof E., Dumas P., Moras D. Crystallographic refinement of yeast aspartic acid transfer RNA. J Mol Biol. 1985 Jul 5;184(1):119–145. doi: 10.1016/0022-2836(85)90048-8. [DOI] [PubMed] [Google Scholar]
  49. Westhof E., Dumas P., Moras D. Hydration of transfer RNA molecules: a crystallographic study. Biochimie. 1988 Feb;70(2):145–165. doi: 10.1016/0300-9084(88)90056-9. [DOI] [PubMed] [Google Scholar]
  50. Westhof E., Sundaralingam M. Restrained refinement of the monoclinic form of yeast phenylalanine transfer RNA. Temperature factors and dynamics, coordinated waters, and base-pair propeller twist angles. Biochemistry. 1986 Aug 26;25(17):4868–4878. doi: 10.1021/bi00365a022. [DOI] [PubMed] [Google Scholar]
  51. Westhof E. Water: an integral part of nucleic acid structure. Annu Rev Biophys Biophys Chem. 1988;17:125–144. doi: 10.1146/annurev.bb.17.060188.001013. [DOI] [PubMed] [Google Scholar]
  52. White S. A., Nilges M., Huang A., Brünger A. T., Moore P. B. NMR analysis of helix I from the 5S RNA of Escherichia coli. Biochemistry. 1992 Feb 18;31(6):1610–1621. doi: 10.1021/bi00121a005. [DOI] [PubMed] [Google Scholar]
  53. Wu M., McDowell J. A., Turner D. H. A periodic table of symmetric tandem mismatches in RNA. Biochemistry. 1995 Mar 14;34(10):3204–3211. doi: 10.1021/bi00010a009. [DOI] [PubMed] [Google Scholar]
  54. van Knippenberg P. H., Formenoy L. J., Heus H. A. Is there a special function for U.G basepairs in ribosomal RNA? Biochim Biophys Acta. 1990 Aug 27;1050(1-3):14–17. doi: 10.1016/0167-4781(90)90134-n. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES