Skip to main content
RNA logoLink to RNA
. 2000 Jan;6(1):96–102. doi: 10.1017/s1355838200991635

Structural requirement for the two-step dimerization of human immunodeficiency virus type 1 genome.

K I Takahashi 1, S Baba 1, P Chattopadhyay 1, Y Koyanagi 1, N Yamamoto 1, H Takaku 1, G Kawai 1
PMCID: PMC1369897  PMID: 10668802

Abstract

Generation of RNA dimeric form of the human immunodeficiency virus type 1 (HIV-1) genome is crucial for viral replication. The dimerization initiation site (DIS) has been identified as a primary sequence that can form a stem-loop structure with a self-complementary sequence in the loop and a bulge in the stem. It has been reported that HIV-1 RNA fragments containing the DIS form two types of dimers, loose dimers and tight dimers. The loose dimers are spontaneously generated at the physiological temperature and converted into tight dimers by the addition of nucleocapsid protein NCp7. To know the biochemical process in this two-step dimerization reaction, we chemically synthesized a 39-mer RNA covering the entire DIS sequence and also a 23-mer RNA covering the self-complementary loop and its flanking stem within the DIS. Electrophoretic dimerization assays demonstrated that the 39-mer RNA reproduced the two-step dimerization process, whereas the 23-mer RNA immediately formed the tight dimer. Furthermore, deletion of the bulge from the 39-mer RNA prevented the NCp7-assisted tight-dimer formation. Therefore, the whole DIS sequence is necessary and sufficient for the two-step dimerization. Our data suggested that the bulge region regulates the stability of the stem and guides the DIS to the two-step dimerization process.

Full Text

The Full Text of this article is available as a PDF (390.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clever J. L., Parslow T. G. Mutant human immunodeficiency virus type 1 genomes with defects in RNA dimerization or encapsidation. J Virol. 1997 May;71(5):3407–3414. doi: 10.1128/jvi.71.5.3407-3414.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clever J. L., Wong M. L., Parslow T. G. Requirements for kissing-loop-mediated dimerization of human immunodeficiency virus RNA. J Virol. 1996 Sep;70(9):5902–5908. doi: 10.1128/jvi.70.9.5902-5908.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Damgaard C. K., Dyhr-Mikkelsen H., Kjems J. Mapping the RNA binding sites for human immunodeficiency virus type-1 gag and NC proteins within the complete HIV-1 and -2 untranslated leader regions. Nucleic Acids Res. 1998 Aug 15;26(16):3667–3676. doi: 10.1093/nar/26.16.3667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dannull J., Surovoy A., Jung G., Moelling K. Specific binding of HIV-1 nucleocapsid protein to PSI RNA in vitro requires N-terminal zinc finger and flanking basic amino acid residues. EMBO J. 1994 Apr 1;13(7):1525–1533. doi: 10.1002/j.1460-2075.1994.tb06414.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dardel F., Marquet R., Ehresmann C., Ehresmann B., Blanquet S. Solution studies of the dimerization initiation site of HIV-1 genomic RNA. Nucleic Acids Res. 1998 Aug 1;26(15):3567–3571. doi: 10.1093/nar/26.15.3567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Guzman R. N., Wu Z. R., Stalling C. C., Pappalardo L., Borer P. N., Summers M. F. Structure of the HIV-1 nucleocapsid protein bound to the SL3 psi-RNA recognition element. Science. 1998 Jan 16;279(5349):384–388. doi: 10.1126/science.279.5349.384. [DOI] [PubMed] [Google Scholar]
  7. De Rocquigny H., Gabus C., Vincent A., Fournié-Zaluski M. C., Roques B., Darlix J. L. Viral RNA annealing activities of human immunodeficiency virus type 1 nucleocapsid protein require only peptide domains outside the zinc fingers. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6472–6476. doi: 10.1073/pnas.89.14.6472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Feng Y. X., Copeland T. D., Henderson L. E., Gorelick R. J., Bosche W. J., Levin J. G., Rein A. HIV-1 nucleocapsid protein induces "maturation" of dimeric retroviral RNA in vitro. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7577–7581. doi: 10.1073/pnas.93.15.7577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Feng Y. X., Fu W., Winter A. J., Levin J. G., Rein A. Multiple regions of Harvey sarcoma virus RNA can dimerize in vitro. J Virol. 1995 Apr;69(4):2486–2490. doi: 10.1128/jvi.69.4.2486-2490.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fu W., Gorelick R. J., Rein A. Characterization of human immunodeficiency virus type 1 dimeric RNA from wild-type and protease-defective virions. J Virol. 1994 Aug;68(8):5013–5018. doi: 10.1128/jvi.68.8.5013-5018.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fu W., Rein A. Maturation of dimeric viral RNA of Moloney murine leukemia virus. J Virol. 1993 Sep;67(9):5443–5449. doi: 10.1128/jvi.67.9.5443-5449.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Haddrick M., Lear A. L., Cann A. J., Heaphy S. Evidence that a kissing loop structure facilitates genomic RNA dimerisation in HIV-1. J Mol Biol. 1996 May 31;259(1):58–68. doi: 10.1006/jmbi.1996.0301. [DOI] [PubMed] [Google Scholar]
  13. Höglund S., Ohagen A., Goncalves J., Panganiban A. T., Gabuzda D. Ultrastructure of HIV-1 genomic RNA. Virology. 1997 Jul 7;233(2):271–279. doi: 10.1006/viro.1997.8585. [DOI] [PubMed] [Google Scholar]
  14. Lapadat-Tapolsky M., Pernelle C., Borie C., Darlix J. L. Analysis of the nucleic acid annealing activities of nucleocapsid protein from HIV-1. Nucleic Acids Res. 1995 Jul 11;23(13):2434–2441. doi: 10.1093/nar/23.13.2434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Laughrea M., Jetté L. A 19-nucleotide sequence upstream of the 5' major splice donor is part of the dimerization domain of human immunodeficiency virus 1 genomic RNA. Biochemistry. 1994 Nov 15;33(45):13464–13474. doi: 10.1021/bi00249a035. [DOI] [PubMed] [Google Scholar]
  16. Laughrea M., Jetté L. HIV-1 genome dimerization: formation kinetics and thermal stability of dimeric HIV-1Lai RNAs are not improved by the 1-232 and 296-790 regions flanking the kissing-loop domain. Biochemistry. 1996 Jul 23;35(29):9366–9374. doi: 10.1021/bi960395s. [DOI] [PubMed] [Google Scholar]
  17. Laughrea M., Jetté L. Kissing-loop model of HIV-1 genome dimerization: HIV-1 RNAs can assume alternative dimeric forms, and all sequences upstream or downstream of hairpin 248-271 are dispensable for dimer formation. Biochemistry. 1996 Feb 6;35(5):1589–1598. doi: 10.1021/bi951838f. [DOI] [PubMed] [Google Scholar]
  18. Laughrea M., Jetté L., Mak J., Kleiman L., Liang C., Wainberg M. A. Mutations in the kissing-loop hairpin of human immunodeficiency virus type 1 reduce viral infectivity as well as genomic RNA packaging and dimerization. J Virol. 1997 May;71(5):3397–3406. doi: 10.1128/jvi.71.5.3397-3406.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Laughrea M., Shen N., Jetté L., Wainberg M. A. Variant effects of non-native kissing-loop hairpin palindromes on HIV replication and HIV RNA dimerization: role of stem-loop B in HIV replication and HIV RNA dimerization. Biochemistry. 1999 Jan 5;38(1):226–234. doi: 10.1021/bi981728j. [DOI] [PubMed] [Google Scholar]
  20. Mujeeb A., Clever J. L., Billeci T. M., James T. L., Parslow T. G. Structure of the dimer initiation complex of HIV-1 genomic RNA. Nat Struct Biol. 1998 Jun;5(6):432–436. doi: 10.1038/nsb0698-432. [DOI] [PubMed] [Google Scholar]
  21. Muriaux D., De Rocquigny H., Roques B. P., Paoletti J. NCp7 activates HIV-1Lai RNA dimerization by converting a transient loop-loop complex into a stable dimer. J Biol Chem. 1996 Dec 27;271(52):33686–33692. doi: 10.1074/jbc.271.52.33686. [DOI] [PubMed] [Google Scholar]
  22. Muriaux D., Fossé P., Paoletti J. A kissing complex together with a stable dimer is involved in the HIV-1Lai RNA dimerization process in vitro. Biochemistry. 1996 Apr 16;35(15):5075–5082. doi: 10.1021/bi952822s. [DOI] [PubMed] [Google Scholar]
  23. Muriaux D., Girard P. M., Bonnet-Mathonière B., Paoletti J. Dimerization of HIV-1Lai RNA at low ionic strength. An autocomplementary sequence in the 5' leader region is evidenced by an antisense oligonucleotide. J Biol Chem. 1995 Apr 7;270(14):8209–8216. doi: 10.1074/jbc.270.14.8209. [DOI] [PubMed] [Google Scholar]
  24. Paillart J. C., Berthoux L., Ottmann M., Darlix J. L., Marquet R., Ehresmann B., Ehresmann C. A dual role of the putative RNA dimerization initiation site of human immunodeficiency virus type 1 in genomic RNA packaging and proviral DNA synthesis. J Virol. 1996 Dec;70(12):8348–8354. doi: 10.1128/jvi.70.12.8348-8354.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Paillart J. C., Marquet R., Skripkin E., Ehresmann B., Ehresmann C. Mutational analysis of the bipartite dimer linkage structure of human immunodeficiency virus type 1 genomic RNA. J Biol Chem. 1994 Nov 4;269(44):27486–27493. [PubMed] [Google Scholar]
  26. Paillart J. C., Skripkin E., Ehresmann B., Ehresmann C., Marquet R. A loop-loop "kissing" complex is the essential part of the dimer linkage of genomic HIV-1 RNA. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5572–5577. doi: 10.1073/pnas.93.11.5572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Paillart J. C., Westhof E., Ehresmann C., Ehresmann B., Marquet R. Non-canonical interactions in a kissing loop complex: the dimerization initiation site of HIV-1 genomic RNA. J Mol Biol. 1997 Jul 4;270(1):36–49. doi: 10.1006/jmbi.1997.1096. [DOI] [PubMed] [Google Scholar]
  28. Remy E., de Rocquigny H., Petitjean P., Muriaux D., Theilleux V., Paoletti J., Roques B. P. The annealing of tRNA3Lys to human immunodeficiency virus type 1 primer binding site is critically dependent on the NCp7 zinc fingers structure. J Biol Chem. 1998 Feb 27;273(9):4819–4822. doi: 10.1074/jbc.273.9.4819. [DOI] [PubMed] [Google Scholar]
  29. Skripkin E., Paillart J. C., Marquet R., Blumenfeld M., Ehresmann B., Ehresmann C. Mechanisms of inhibition of in vitro dimerization of HIV type I RNA by sense and antisense oligonucleotides. J Biol Chem. 1996 Nov 15;271(46):28812–28817. doi: 10.1074/jbc.271.46.28812. [DOI] [PubMed] [Google Scholar]
  30. Skripkin E., Paillart J. C., Marquet R., Ehresmann B., Ehresmann C. Identification of the primary site of the human immunodeficiency virus type 1 RNA dimerization in vitro. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4945–4949. doi: 10.1073/pnas.91.11.4945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tinoco I., Jr, Borer P. N., Dengler B., Levin M. D., Uhlenbeck O. C., Crothers D. M., Bralla J. Improved estimation of secondary structure in ribonucleic acids. Nat New Biol. 1973 Nov 14;246(150):40–41. doi: 10.1038/newbio246040a0. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES