Abstract
Beginning with the framework that has been developed for the assembly of the 30 S ribosomal subunit, we have identified a series of RNAs that are minimal binding sites for proteins S15, S6, S18, and S11 in the central domain from Thermus thermophilus. The minimal binding RNA for proteins S15, S6, and S18 consists of helix 22 and three-way junctions at both ends composed of portions of helices 20, 21, and 23. Addition of the remaining portion of helix 23 to this construct results in the minimal site for S11. Surprisingly, almost half of the central domain (helices 24, 25, and 26) is dispensable for binding the central domain proteins. Thus, at least two classes of RNA elements can be identified in ribosomal RNA. A protein-binding core element (such as helices 20, 21, 22, and 23) is required for the association of ribosomal proteins, whereas secondary binding elements (such as helices 24, 25, and 26) associate only with the preformed core RNP complex. Apparently, there may be a hierarchy of ribosomal RNA elements similar to the hierarchy of primary, secondary, and tertiary binding ribosomal proteins.
Full Text
The Full Text of this article is available as a PDF (575.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agalarov S. C., Selivanova O. M., Zheleznyakova E. N., Zheleznaya L. A., Matvienko N. I., Spirin A. S. Independent in vitro assembly of all three major morphological parts of the 30S ribosomal subunit of Thermus thermophilus. Eur J Biochem. 1999 Dec;266(2):533–537. doi: 10.1046/j.1432-1327.1999.00890.x. [DOI] [PubMed] [Google Scholar]
- Agalarov S. C., Zheleznyakova E. N., Selivanova O. M., Zheleznaya L. A., Matvienko N. I., Vasiliev V. D., Spirin A. S. In vitro assembly of a ribonucleoprotein particle corresponding to the platform domain of the 30S ribosomal subunit. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):999–1003. doi: 10.1073/pnas.95.3.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Batey R. T., Williamson J. R. Interaction of the Bacillus stearothermophilus ribosomal protein S15 with 16 S rRNA: I. Defining the minimal RNA site. J Mol Biol. 1996 Aug 30;261(4):536–549. doi: 10.1006/jmbi.1996.0481. [DOI] [PubMed] [Google Scholar]
- Clemons W. M., Jr, May J. L., Wimberly B. T., McCutcheon J. P., Capel M. S., Ramakrishnan V. Structure of a bacterial 30S ribosomal subunit at 5.5 A resolution. Nature. 1999 Aug 26;400(6747):833–840. doi: 10.1038/23631. [DOI] [PubMed] [Google Scholar]
- Doudna J. A., Cech T. R. Self-assembly of a group I intron active site from its component tertiary structural domains. RNA. 1995 Mar;1(1):36–45. [PMC free article] [PubMed] [Google Scholar]
- Dragon F., Brakier-Gingras L. Interaction of Escherichia coli ribosomal protein S7 with 16S rRNA. Nucleic Acids Res. 1993 Mar 11;21(5):1199–1203. doi: 10.1093/nar/21.5.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eliseikina I. A., Agalarov S. Ch, Muranova T. A., Markova L. F., Kashparov I. A., Avliiakulov N. K., Garber M. B. Preparativnoe vydelenie belkov iz ribosomnykh 30S subchastits Thermus thermophilus v nedenaturiruiushchikh usloviiakh. Biokhimiia. 1995 Oct;60(10):1720–1730. [PubMed] [Google Scholar]
- Gregory R. J., Zeller M. L., Thurlow D. L., Gourse R. L., Stark M. J., Dahlberg A. E., Zimmermann R. A. Interaction of ribosomal proteins S6, S8, S15 and S18 with the central domain of 16 S ribosomal RNA from Escherichia coli. J Mol Biol. 1984 Sep 15;178(2):287–302. doi: 10.1016/0022-2836(84)90145-1. [DOI] [PubMed] [Google Scholar]
- Held W. A., Ballou B., Mizushima S., Nomura M. Assembly mapping of 30 S ribosomal proteins from Escherichia coli. Further studies. J Biol Chem. 1974 May 25;249(10):3103–3111. [PubMed] [Google Scholar]
- Laggerbauer B., Murphy F. L., Cech T. R. Two major tertiary folding transitions of the Tetrahymena catalytic RNA. EMBO J. 1994 Jun 1;13(11):2669–2676. doi: 10.1002/j.1460-2075.1994.tb06557.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mougel M., Allmang C., Eyermann F., Cachia C., Ehresmann B., Ehresmann C. Minimal 16S rRNA binding site and role of conserved nucleotides in Escherichia coli ribosomal protein S8 recognition. Eur J Biochem. 1993 Aug 1;215(3):787–792. doi: 10.1111/j.1432-1033.1993.tb18093.x. [DOI] [PubMed] [Google Scholar]
- Pokrovskaya I. D., Gurevich V. V. In vitro transcription: preparative RNA yields in analytical scale reactions. Anal Biochem. 1994 Aug 1;220(2):420–423. doi: 10.1006/abio.1994.1360. [DOI] [PubMed] [Google Scholar]
- Powers T., Noller H. F. Hydroxyl radical footprinting of ribosomal proteins on 16S rRNA. RNA. 1995 Apr;1(2):194–209. [PMC free article] [PubMed] [Google Scholar]
- Serganov A. A., Masquida B., Westhof E., Cachia C., Portier C., Garber M., Ehresmann B., Ehresmann C. The 16S rRNA binding site of Thermus thermophilus ribosomal protein S15: comparison with Escherichia coli S15, minimum site and structure. RNA. 1996 Nov;2(11):1124–1138. [PMC free article] [PubMed] [Google Scholar]
- Tsiboli P., Herfurth E., Choli T. Purification and characterization of the 30S ribosomal proteins from the bacterium Thermus thermophilus. Eur J Biochem. 1994 Nov 15;226(1):169–177. doi: 10.1111/j.1432-1033.1994.tb20038.x. [DOI] [PubMed] [Google Scholar]
- Ulitin A. B., Agalarov S. Ch, Serdyuk I. N. Preparation of a 'beheaded' derivative of the 30S ribosomal subunit. Biochimie. 1997 Sep;79(8):523–526. doi: 10.1016/s0300-9084(97)82745-9. [DOI] [PubMed] [Google Scholar]
- Wu H., Jiang L., Zimmermann R. A. The binding site for ribosomal protein S8 in 16S rRNA and spc mRNA from Escherichia coli: minimum structural requirements and the effects of single bulged bases on S8-RNA interaction. Nucleic Acids Res. 1994 May 11;22(9):1687–1695. doi: 10.1093/nar/22.9.1687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zarrinkar P. P., Williamson J. R. Kinetic intermediates in RNA folding. Science. 1994 Aug 12;265(5174):918–924. doi: 10.1126/science.8052848. [DOI] [PubMed] [Google Scholar]