Abstract
The mouse mammary tumor virus (MMTV) gag-pro frameshifting pseudoknot is an H-type RNA pseudoknot that contains an unpaired adenosine (A14) at the junction of the two helical stems required for efficient frameshifting activity. The thermodynamics of folding of the MMTV vpk pseudoknot have been compared with a structurally homologous mutant RNA containing a G x U to G-C substitution at the helical junction (U13C RNA), and an A14 deletion mutation in that context (U13CdeltaA14 RNA). Dual wavelength optical melting and differential scanning calorimetry reveal that the unpaired adenosine contributes 0.7 (+/-0.2) kcal mol(-1) at low salt and 1.4 (+/-0.2) kcal mol(-1) to the stability (deltaG(0)37) at 1 M NaCl. This stability increment derives from a favorable enthalpy contribution to the stability deltadeltaH = 6.6 (+/-2.1) kcal mol(-1) with deltadeltaG(0)37 comparable to that predicted for the stacking of a dangling 3' unpaired adenosine on a G-C or G x U base pair. Group 1A monovalent ions, NH4+, Mg2+, and Co(NH3)6(3+) ions stabilize the A14 and deltaA14 pseudoknots to largely identical extents, revealing that the observed differences in stability in these molecules do not derive from a differential or specific accumulation of ions in the A14 versus deltaA14 pseudoknots. Knowledge of this free energy contribution may facilitate the prediction of RNA pseudoknot formation from primary nucleotide sequence (Gultyaev et al., 1999, RNA 5:609-617).
Full Text
The Full Text of this article is available as a PDF (754.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alam S. L., Wills N. M., Ingram J. A., Atkins J. F., Gesteland R. F. Structural studies of the RNA pseudoknot required for readthrough of the gag-termination codon of murine leukemia virus. J Mol Biol. 1999 May 21;288(5):837–852. doi: 10.1006/jmbi.1999.2713. [DOI] [PubMed] [Google Scholar]
- Brierley I., Rolley N. J., Jenner A. J., Inglis S. C. Mutational analysis of the RNA pseudoknot component of a coronavirus ribosomal frameshifting signal. J Mol Biol. 1991 Aug 20;220(4):889–902. doi: 10.1016/0022-2836(91)90361-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burkard M. E., Kierzek R., Turner D. H. Thermodynamics of unpaired terminal nucleotides on short RNA helixes correlates with stacking at helix termini in larger RNAs. J Mol Biol. 1999 Jul 30;290(5):967–982. doi: 10.1006/jmbi.1999.2906. [DOI] [PubMed] [Google Scholar]
- Chamorro M., Parkin N., Varmus H. E. An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):713–717. doi: 10.1073/pnas.89.2.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen X., Chamorro M., Lee S. I., Shen L. X., Hines J. V., Tinoco I., Jr, Varmus H. E. Structural and functional studies of retroviral RNA pseudoknots involved in ribosomal frameshifting: nucleotides at the junction of the two stems are important for efficient ribosomal frameshifting. EMBO J. 1995 Feb 15;14(4):842–852. doi: 10.1002/j.1460-2075.1995.tb07062.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen X., Kang H., Shen L. X., Chamorro M., Varmus H. E., Tinoco I., Jr A characteristic bent conformation of RNA pseudoknots promotes -1 frameshifting during translation of retroviral RNA. J Mol Biol. 1996 Jul 26;260(4):479–483. doi: 10.1006/jmbi.1996.0415. [DOI] [PubMed] [Google Scholar]
- Du Z., Giedroc D. P., Hoffman D. W. Structure of the autoregulatory pseudoknot within the gene 32 messenger RNA of bacteriophages T2 and T6: a model for a possible family of structurally related RNA pseudoknots. Biochemistry. 1996 Apr 2;35(13):4187–4198. doi: 10.1021/bi9527350. [DOI] [PubMed] [Google Scholar]
- Du Z., Hoffman D. W. An NMR and mutational study of the pseudoknot within the gene 32 mRNA of bacteriophage T2: insights into a family of structurally related RNA pseudoknots. Nucleic Acids Res. 1997 Mar 15;25(6):1130–1135. doi: 10.1093/nar/25.6.1130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Du Z., Holland J. A., Hansen M. R., Giedroc D. P., Hoffman D. W. Base-pairings within the RNA pseudoknot associated with the simian retrovirus-1 gag-pro frameshift site. J Mol Biol. 1997 Jul 18;270(3):464–470. doi: 10.1006/jmbi.1997.1127. [DOI] [PubMed] [Google Scholar]
- Gluick T. C., Wills N. M., Gesteland R. F., Draper D. E. Folding of an mRNA pseudoknot required for stop codon readthrough: effects of mono- and divalent ions on stability. Biochemistry. 1997 Dec 23;36(51):16173–16186. doi: 10.1021/bi971362v. [DOI] [PubMed] [Google Scholar]
- Gonzalez R. L., Jr, Tinoco I., Jr Solution structure and thermodynamics of a divalent metal ion binding site in an RNA pseudoknot. J Mol Biol. 1999 Jun 25;289(5):1267–1282. doi: 10.1006/jmbi.1999.2841. [DOI] [PubMed] [Google Scholar]
- Gultyaev A. P., van Batenburg F. H., Pleij C. W. An approximation of loop free energy values of RNA H-pseudoknots. RNA. 1999 May;5(5):609–617. doi: 10.1017/s135583829998189x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gultyaev A. P., van Batenburg F. H., Pleij C. W. An approximation of loop free energy values of RNA H-pseudoknots. RNA. 1999 May;5(5):609–617. doi: 10.1017/s135583829998189x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hermann T., Westhof E. Exploration of metal ion binding sites in RNA folds by Brownian-dynamics simulations. Structure. 1998 Oct 15;6(10):1303–1314. doi: 10.1016/s0969-2126(98)00130-0. [DOI] [PubMed] [Google Scholar]
- Holland J. A., Hansen M. R., Du Z., Hoffman D. W. An examination of coaxial stacking of helical stems in a pseudoknot motif: the gene 32 messenger RNA pseudoknot of bacteriophage T2. RNA. 1999 Feb;5(2):257–271. doi: 10.1017/s1355838299981360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kang H., Hines J. V., Tinoco I., Jr Conformation of a non-frameshifting RNA pseudoknot from mouse mammary tumor virus. J Mol Biol. 1996 May 31;259(1):135–147. doi: 10.1006/jmbi.1996.0308. [DOI] [PubMed] [Google Scholar]
- Kang H., Tinoco I., Jr A mutant RNA pseudoknot that promotes ribosomal frameshifting in mouse mammary tumor virus. Nucleic Acids Res. 1997 May 15;25(10):1943–1949. doi: 10.1093/nar/25.10.1943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laing L. G., Draper D. E. Thermodynamics of RNA folding in a conserved ribosomal RNA domain. J Mol Biol. 1994 Apr 15;237(5):560–576. doi: 10.1006/jmbi.1994.1255. [DOI] [PubMed] [Google Scholar]
- Laing L. G., Gluick T. C., Draper D. E. Stabilization of RNA structure by Mg ions. Specific and non-specific effects. J Mol Biol. 1994 Apr 15;237(5):577–587. doi: 10.1006/jmbi.1994.1256. [DOI] [PubMed] [Google Scholar]
- Le S. Y., Chen J. H., Pattabiraman N., Maizel J. V., Jr Ion-RNA interactions in the RNA pseudoknot of a ribosomal frameshifting site: molecular modeling studies. J Biomol Struct Dyn. 1998 Aug;16(1):1–11. doi: 10.1080/07391102.1998.10508221. [DOI] [PubMed] [Google Scholar]
- Liphardt J., Napthine S., Kontos H., Brierley I. Evidence for an RNA pseudoknot loop-helix interaction essential for efficient -1 ribosomal frameshifting. J Mol Biol. 1999 May 7;288(3):321–335. doi: 10.1006/jmbi.1999.2689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mathews D. H., Sabina J., Zuker M., Turner D. H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol. 1999 May 21;288(5):911–940. doi: 10.1006/jmbi.1999.2700. [DOI] [PubMed] [Google Scholar]
- Morikawa S., Bishop D. H. Identification and analysis of the gag-pol ribosomal frameshift site of feline immunodeficiency virus. Virology. 1992 Feb;186(2):389–397. doi: 10.1016/0042-6822(92)90004-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Napthine S., Liphardt J., Bloys A., Routledge S., Brierley I. The role of RNA pseudoknot stem 1 length in the promotion of efficient -1 ribosomal frameshifting. J Mol Biol. 1999 May 7;288(3):305–320. doi: 10.1006/jmbi.1999.2688. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nixon P. L., Giedroc D. P. Energetics of a strongly pH dependent RNA tertiary structure in a frameshifting pseudoknot. J Mol Biol. 2000 Feb 18;296(2):659–671. doi: 10.1006/jmbi.1999.3464. [DOI] [PubMed] [Google Scholar]
- Nixon P. L., Giedroc D. P. Equilibrium unfolding (folding) pathway of a model H-type pseudoknotted RNA: the role of magnesium ions in stability. Biochemistry. 1998 Nov 17;37(46):16116–16129. doi: 10.1021/bi981726z. [DOI] [PubMed] [Google Scholar]
- Nixon P. L., Theimer C. A., Giedroc D. P. Thermodynamics of stabilization of RNA pseudoknots by cobalt(III) hexaammine. Biopolymers. 1999 Oct 5;50(4):443–458. doi: 10.1002/(SICI)1097-0282(19991005)50:4<443::AID-BIP9>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
- Puglisi J. D., Wyatt J. R., Tinoco I., Jr Conformation of an RNA pseudoknot. J Mol Biol. 1990 Jul 20;214(2):437–453. doi: 10.1016/0022-2836(90)90192-O. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qiu H., Kaluarachchi K., Du Z., Hoffman D. W., Giedroc D. P. Thermodynamics of folding of the RNA pseudoknot of the T4 gene 32 autoregulatory messenger RNA. Biochemistry. 1996 Apr 2;35(13):4176–4186. doi: 10.1021/bi9527348. [DOI] [PubMed] [Google Scholar]
- Shen L. X., Tinoco I., Jr The structure of an RNA pseudoknot that causes efficient frameshifting in mouse mammary tumor virus. J Mol Biol. 1995 Apr 14;247(5):963–978. doi: 10.1006/jmbi.1995.0193. [DOI] [PubMed] [Google Scholar]
- Strobel S. A., Doudna J. A. RNA seeing double: close-packing of helices in RNA tertiary structure. Trends Biochem Sci. 1997 Jul;22(7):262–266. doi: 10.1016/s0968-0004(97)01056-6. [DOI] [PubMed] [Google Scholar]
- Su L., Chen L., Egli M., Berger J. M., Rich A. Minor groove RNA triplex in the crystal structure of a ribosomal frameshifting viral pseudoknot. Nat Struct Biol. 1999 Mar;6(3):285–292. doi: 10.1038/6722. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sung D., Kang H. Mutational analysis of the RNA pseudoknot involved in efficient ribosomal frameshifting in simian retrovirus-1. Nucleic Acids Res. 1998 Mar 15;26(6):1369–1372. doi: 10.1093/nar/26.6.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Theimer C. A., Giedroc D. P. Equilibrium unfolding pathway of an H-type RNA pseudoknot which promotes programmed -1 ribosomal frameshifting. J Mol Biol. 1999 Jun 25;289(5):1283–1299. doi: 10.1006/jmbi.1999.2850. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Theimer C. A., Wang Y., Hoffman D. W., Krisch H. M., Giedroc D. P. Non-nearest neighbor effects on the thermodynamics of unfolding of a model mRNA pseudoknot. J Mol Biol. 1998 Jun 12;279(3):545–564. doi: 10.1006/jmbi.1998.1812. [DOI] [PubMed] [Google Scholar]
- Turner D. H., Sugimoto N., Freier S. M. RNA structure prediction. Annu Rev Biophys Biophys Chem. 1988;17:167–192. doi: 10.1146/annurev.bb.17.060188.001123. [DOI] [PubMed] [Google Scholar]
- Wyatt J. R., Puglisi J. D., Tinoco I., Jr RNA pseudoknots. Stability and loop size requirements. J Mol Biol. 1990 Jul 20;214(2):455–470. doi: 10.1016/0022-2836(90)90193-P. [DOI] [PubMed] [Google Scholar]
- Xia T., SantaLucia J., Jr, Burkard M. E., Kierzek R., Schroeder S. J., Jiao X., Cox C., Turner D. H. Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. Biochemistry. 1998 Oct 20;37(42):14719–14735. doi: 10.1021/bi9809425. [DOI] [PubMed] [Google Scholar]
- ten Dam E. B., Verlaan P. W., Pleij C. W. Analysis of the role of the pseudoknot component in the SRV-1 gag-pro ribosomal frameshift signal: loop lengths and stability of the stem regions. RNA. 1995 Apr;1(2):146–154. [PMC free article] [PubMed] [Google Scholar]