Skip to main content
RNA logoLink to RNA
. 2000 Jun;6(6):795–813. doi: 10.1017/s1355838200000649

An unconventional origin of metal-ion rescue and inhibition in the Tetrahymena group I ribozyme reaction.

S O Shan 1, D Herschlag 1
PMCID: PMC1369959  PMID: 10864040

Abstract

The presence of catalytic metal ions in RNA active sites has often been inferred from metal-ion rescue of modified substrates and sometimes from inhibitory effects of alternative metal ions. Herein we report that, in the Tetrahymena group I ribozyme reaction, the deleterious effect of a thio substitution at the pro-Sp position of the reactive phosphoryl group is rescued by Mn2+. However, analysis of the reaction of this thio substrate and of substrates with other modifications strongly suggest that this rescue does not stem from a direct Mn2+ interaction with the Sp sulfur. Instead, the apparent rescue arises from a Mn2+ ion interacting with the residue immediately 3' of the cleavage site, A(+1), that stabilizes the tertiary interactions between the oligonucleotide substrate (S) and the active site. This metal site is referred to as site D herein. We also present evidence that a previously observed Ca2+ ion that inhibits the chemical step binds to metal site D. These and other observations suggest that, whereas the interactions of Mn2+ at site D are favorable for the chemical reaction, the Ca2+ at site D exerts its inhibitory effect by disrupting the alignment of the substrates within the active site. These results emphasize the vigilance necessary in the design and interpretation of metal-ion rescue and inhibition experiments. Conversely, in-depth mechanistic analysis of the effects of site-specific substrate modifications can allow the effects of specific metal ion-RNA interactions to be revealed and the properties of individual metal-ion sites to be probed, even within the sea of metal ions bound to RNA.

Full Text

The Full Text of this article is available as a PDF (555.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bassi G. S., Murchie A. I., Lilley D. M. The ion-induced folding of the hammerhead ribozyme: core sequence changes that perturb folding into the active conformation. RNA. 1996 Aug;2(8):756–768. [PMC free article] [PubMed] [Google Scholar]
  2. Basu S., Strobel S. A. Thiophilic metal ion rescue of phosphorothioate interference within the Tetrahymena ribozyme P4-P6 domain. RNA. 1999 Nov;5(11):1399–1407. doi: 10.1017/s135583829999115x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beebe J. A., Kurz J. C., Fierke C. A. Magnesium ions are required by Bacillus subtilis ribonuclease P RNA for both binding and cleaving precursor tRNAAsp. Biochemistry. 1996 Aug 13;35(32):10493–10505. doi: 10.1021/bi960870m. [DOI] [PubMed] [Google Scholar]
  4. Bevilacqua P. C., Kierzek R., Johnson K. A., Turner D. H. Dynamics of ribozyme binding of substrate revealed by fluorescence-detected stopped-flow methods. Science. 1992 Nov 20;258(5086):1355–1358. doi: 10.1126/science.1455230. [DOI] [PubMed] [Google Scholar]
  5. Brautigam C. A., Steitz T. A. Structural principles for the inhibition of the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I by phosphorothioates. J Mol Biol. 1998 Mar 27;277(2):363–377. doi: 10.1006/jmbi.1997.1586. [DOI] [PubMed] [Google Scholar]
  6. Bujalowski W., Graeser E., McLaughlin L. W., Proschke D. Anticodon loop of tRNAPhe: structure, dynamics, and Mg2+ binding. Biochemistry. 1986 Oct 21;25(21):6365–6371. doi: 10.1021/bi00369a004. [DOI] [PubMed] [Google Scholar]
  7. Burgers P. M., Eckstein F. A study of the mechanism of DNA polymerase I from Escherichia coli with diastereomeric phosphorothioate analogs of deoxyadenosine triphosphate. J Biol Chem. 1979 Aug 10;254(15):6889–6893. [PubMed] [Google Scholar]
  8. Burgers P. M., Eckstein F. Structure of metal x nucleotide complex in the creatine kinase reaction. A study with diastereomeric phosphorothioate analogs of adenosine di- and triphosphate. J Biol Chem. 1980 Sep 10;255(17):8229–8233. [PubMed] [Google Scholar]
  9. Cate J. H., Doudna J. A. Metal-binding sites in the major groove of a large ribozyme domain. Structure. 1996 Oct 15;4(10):1221–1229. doi: 10.1016/s0969-2126(96)00129-3. [DOI] [PubMed] [Google Scholar]
  10. Cate J. H., Gooding A. R., Podell E., Zhou K., Golden B. L., Kundrot C. E., Cech T. R., Doudna J. A. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science. 1996 Sep 20;273(5282):1678–1685. doi: 10.1126/science.273.5282.1678. [DOI] [PubMed] [Google Scholar]
  11. Cate J. H., Hanna R. L., Doudna J. A. A magnesium ion core at the heart of a ribozyme domain. Nat Struct Biol. 1997 Jul;4(7):553–558. doi: 10.1038/nsb0797-553. [DOI] [PubMed] [Google Scholar]
  12. Celander D. W., Cech T. R. Visualizing the higher order folding of a catalytic RNA molecule. Science. 1991 Jan 25;251(4992):401–407. doi: 10.1126/science.1989074. [DOI] [PubMed] [Google Scholar]
  13. Chen Y., Li X., Gegenheimer P. Ribonuclease P catalysis requires Mg2+ coordinated to the pro-RP oxygen of the scissile bond. Biochemistry. 1997 Mar 4;36(9):2425–2438. doi: 10.1021/bi9620464. [DOI] [PubMed] [Google Scholar]
  14. Christian E. L., Yarus M. Metal coordination sites that contribute to structure and catalysis in the group I intron from Tetrahymena. Biochemistry. 1993 May 4;32(17):4475–4480. doi: 10.1021/bi00068a001. [DOI] [PubMed] [Google Scholar]
  15. Connolly B. A., Eckstein F. Structures of the mono- and divalent metal nucleotide complexes in the myosin ATPase. J Biol Chem. 1981 Sep 25;256(18):9450–9456. [PubMed] [Google Scholar]
  16. Correll C. C., Freeborn B., Moore P. B., Steitz T. A. Metals, motifs, and recognition in the crystal structure of a 5S rRNA domain. Cell. 1997 Nov 28;91(5):705–712. doi: 10.1016/s0092-8674(00)80457-2. [DOI] [PubMed] [Google Scholar]
  17. Dismukes G. Charles. Manganese Enzymes with Binuclear Active Sites. Chem Rev. 1996 Nov 7;96(7):2909–2926. doi: 10.1021/cr950053c. [DOI] [PubMed] [Google Scholar]
  18. Downs W. D., Cech T. R. Kinetic pathway for folding of the Tetrahymena ribozyme revealed by three UV-inducible crosslinks. RNA. 1996 Jul;2(7):718–732. [PMC free article] [PubMed] [Google Scholar]
  19. Draper D. E. Strategies for RNA folding. Trends Biochem Sci. 1996 Apr;21(4):145–149. [PubMed] [Google Scholar]
  20. Feig A. L., Scott W. G., Uhlenbeck O. C. Inhibition of the hammerhead ribozyme cleavage reaction by site-specific binding of Tb. Science. 1998 Jan 2;279(5347):81–84. doi: 10.1126/science.279.5347.81. [DOI] [PubMed] [Google Scholar]
  21. Gluick T. C., Wills N. M., Gesteland R. F., Draper D. E. Folding of an mRNA pseudoknot required for stop codon readthrough: effects of mono- and divalent ions on stability. Biochemistry. 1997 Dec 23;36(51):16173–16186. doi: 10.1021/bi971362v. [DOI] [PubMed] [Google Scholar]
  22. Golden B. L., Gooding A. R., Podell E. R., Cech T. R. A preorganized active site in the crystal structure of the Tetrahymena ribozyme. Science. 1998 Oct 9;282(5387):259–264. doi: 10.1126/science.282.5387.259. [DOI] [PubMed] [Google Scholar]
  23. Groll D. H., Jeltsch A., Selent U., Pingoud A. Does the restriction endonuclease EcoRV employ a two-metal-Ion mechanism for DNA cleavage? Biochemistry. 1997 Sep 23;36(38):11389–11401. doi: 10.1021/bi9705826. [DOI] [PubMed] [Google Scholar]
  24. Grosshans C. A., Cech T. R. Metal ion requirements for sequence-specific endoribonuclease activity of the Tetrahymena ribozyme. Biochemistry. 1989 Aug 22;28(17):6888–6894. doi: 10.1021/bi00443a017. [DOI] [PubMed] [Google Scholar]
  25. Herschlag D., Cech T. R. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 1. Kinetic description of the reaction of an RNA substrate complementary to the active site. Biochemistry. 1990 Nov 6;29(44):10159–10171. doi: 10.1021/bi00496a003. [DOI] [PubMed] [Google Scholar]
  26. Herschlag D., Eckstein F., Cech T. R. Contributions of 2'-hydroxyl groups of the RNA substrate to binding and catalysis by the Tetrahymena ribozyme. An energetic picture of an active site composed of RNA. Biochemistry. 1993 Aug 17;32(32):8299–8311. doi: 10.1021/bi00083a034. [DOI] [PubMed] [Google Scholar]
  27. Herschlag D., Eckstein F., Cech T. R. The importance of being ribose at the cleavage site in the Tetrahymena ribozyme reaction. Biochemistry. 1993 Aug 17;32(32):8312–8321. doi: 10.1021/bi00083a035. [DOI] [PubMed] [Google Scholar]
  28. Herschlag D. Evidence for processivity and two-step binding of the RNA substrate from studies of J1/2 mutants of the Tetrahymena ribozyme. Biochemistry. 1992 Feb 11;31(5):1386–1399. doi: 10.1021/bi00120a015. [DOI] [PubMed] [Google Scholar]
  29. Herschlag D., Khosla M. Comparison of pH dependencies of the Tetrahymena ribozyme reactions with RNA 2'-substituted and phosphorothioate substrates reveals a rate-limiting conformational step. Biochemistry. 1994 May 3;33(17):5291–5297. doi: 10.1021/bi00183a036. [DOI] [PubMed] [Google Scholar]
  30. Herschlag D., Piccirilli J. A., Cech T. R. Ribozyme-catalyzed and nonenzymatic reactions of phosphate diesters: rate effects upon substitution of sulfur for a nonbridging phosphoryl oxygen atom. Biochemistry. 1991 May 21;30(20):4844–4854. doi: 10.1021/bi00234a003. [DOI] [PubMed] [Google Scholar]
  31. Horton N. C., Newberry K. J., Perona J. J. Metal ion-mediated substrate-assisted catalysis in type II restriction endonucleases. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13489–13494. doi: 10.1073/pnas.95.23.13489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Jaffe E. K., Cohn M. Divalent cation-dependent stereospecificity of adenosine 5'-O-(2-thiotriphosphate) in the hexokinase and pyruvate kinase reactions. The absolute stereochemistry of the diastereoisomers of adenosine 5'-O-(2-thiotriphosphate). J Biol Chem. 1978 Jul 25;253(14):4823–4825. [PubMed] [Google Scholar]
  33. José T. J., Conlan L. H., Dupureur C. M. Quantitative evaluation of metal ion binding to PvuII restriction endonuclease. J Biol Inorg Chem. 1999 Dec;4(6):814–823. doi: 10.1007/s007750050355. [DOI] [PubMed] [Google Scholar]
  34. Keck J. L., Goedken E. R., Marqusee S. Activation/attenuation model for RNase H. A one-metal mechanism with second-metal inhibition. J Biol Chem. 1998 Dec 18;273(51):34128–34133. doi: 10.1074/jbc.273.51.34128. [DOI] [PubMed] [Google Scholar]
  35. Knitt D. S., Narlikar G. J., Herschlag D. Dissection of the role of the conserved G.U pair in group I RNA self-splicing. Biochemistry. 1994 Nov 22;33(46):13864–13879. doi: 10.1021/bi00250a041. [DOI] [PubMed] [Google Scholar]
  36. Latham J. A., Cech T. R. Defining the inside and outside of a catalytic RNA molecule. Science. 1989 Jul 21;245(4915):276–282. doi: 10.1126/science.2501870. [DOI] [PubMed] [Google Scholar]
  37. Lehman N., Joyce G. F. Evolution in vitro of an RNA enzyme with altered metal dependence. Nature. 1993 Jan 14;361(6408):182–185. doi: 10.1038/361182a0. [DOI] [PubMed] [Google Scholar]
  38. Linse S., Forsén S. Determinants that govern high-affinity calcium binding. Adv Second Messenger Phosphoprotein Res. 1995;30:89–151. doi: 10.1016/s1040-7952(05)80005-9. [DOI] [PubMed] [Google Scholar]
  39. Lott W. B., Pontius B. W., von Hippel P. H. A two-metal ion mechanism operates in the hammerhead ribozyme-mediated cleavage of an RNA substrate. Proc Natl Acad Sci U S A. 1998 Jan 20;95(2):542–547. doi: 10.1073/pnas.95.2.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. McConnell T. S., Cech T. R. A positive entropy change for guanosine binding and for the chemical step in the Tetrahymena ribozyme reaction. Biochemistry. 1995 Mar 28;34(12):4056–4067. doi: 10.1021/bi00012a024. [DOI] [PubMed] [Google Scholar]
  41. McConnell T. S., Cech T. R., Herschlag D. Guanosine binding to the Tetrahymena ribozyme: thermodynamic coupling with oligonucleotide binding. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8362–8366. doi: 10.1073/pnas.90.18.8362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. McConnell T. S., Herschlag D., Cech T. R. Effects of divalent metal ions on individual steps of the Tetrahymena ribozyme reaction. Biochemistry. 1997 Jul 8;36(27):8293–8303. doi: 10.1021/bi9700678. [DOI] [PubMed] [Google Scholar]
  43. Michel F., Westhof E. Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol. 1990 Dec 5;216(3):585–610. doi: 10.1016/0022-2836(90)90386-Z. [DOI] [PubMed] [Google Scholar]
  44. Narlikar G. J., Bartley L. E., Khosla M., Herschlag D. Characterization of a local folding event of the Tetrahymena group I ribozyme: effects of oligonucleotide substrate length, pH, and temperature on the two substrate binding steps. Biochemistry. 1999 Oct 26;38(43):14192–14204. doi: 10.1021/bi9914309. [DOI] [PubMed] [Google Scholar]
  45. Narlikar G. J., Gopalakrishnan V., McConnell T. S., Usman N., Herschlag D. Use of binding energy by an RNA enzyme for catalysis by positioning and substrate destabilization. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3668–3672. doi: 10.1073/pnas.92.9.3668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Narlikar G. J., Herschlag D. Isolation of a local tertiary folding transition in the context of a globally folded RNA. Nat Struct Biol. 1996 Aug;3(8):701–710. doi: 10.1038/nsb0896-701. [DOI] [PubMed] [Google Scholar]
  47. Narlikar G. J., Khosla M., Usman N., Herschlag D. Quantitating tertiary binding energies of 2' OH groups on the P1 duplex of the Tetrahymena ribozyme: intrinsic binding energy in an RNA enzyme. Biochemistry. 1997 Mar 4;36(9):2465–2477. doi: 10.1021/bi9610820. [DOI] [PubMed] [Google Scholar]
  48. Pan T. Higher order folding and domain analysis of the ribozyme from Bacillus subtilis ribonuclease P. Biochemistry. 1995 Jan 24;34(3):902–909. doi: 10.1021/bi00003a024. [DOI] [PubMed] [Google Scholar]
  49. Peracchi A., Beigelman L., Scott E. C., Uhlenbeck O. C., Herschlag D. Involvement of a specific metal ion in the transition of the hammerhead ribozyme to its catalytic conformation. J Biol Chem. 1997 Oct 24;272(43):26822–26826. doi: 10.1074/jbc.272.43.26822. [DOI] [PubMed] [Google Scholar]
  50. Piccirilli J. A., Vyle J. S., Caruthers M. H., Cech T. R. Metal ion catalysis in the Tetrahymena ribozyme reaction. Nature. 1993 Jan 7;361(6407):85–88. doi: 10.1038/361085a0. [DOI] [PubMed] [Google Scholar]
  51. Pyle A. M., Cech T. R. Ribozyme recognition of RNA by tertiary interactions with specific ribose 2'-OH groups. Nature. 1991 Apr 18;350(6319):628–631. doi: 10.1038/350628a0. [DOI] [PubMed] [Google Scholar]
  52. Quigley G. J., Teeter M. M., Rich A. Structural analysis of spermine and magnesium ion binding to yeast phenylalanine transfer RNA. Proc Natl Acad Sci U S A. 1978 Jan;75(1):64–68. doi: 10.1073/pnas.75.1.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Rajagopal J., Doudna J. A., Szostak J. W. Stereochemical course of catalysis by the Tetrahymena ribozyme. Science. 1989 May 12;244(4905):692–694. doi: 10.1126/science.2470151. [DOI] [PubMed] [Google Scholar]
  54. Rose I. A., O'Connell E. L., Litwin S. Determination of the rate of hexokinase-glucose dissociation by the isotope-trapping method. J Biol Chem. 1974 Aug 25;249(16):5163–5168. [PubMed] [Google Scholar]
  55. Scott E. C., Uhlenbeck O. C. A re-investigation of the thio effect at the hammerhead cleavage site. Nucleic Acids Res. 1999 Jan 15;27(2):479–484. doi: 10.1093/nar/27.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Shan S. O., Herschlag D. Probing the role of metal ions in RNA catalysis: kinetic and thermodynamic characterization of a metal ion interaction with the 2'-moiety of the guanosine nucleophile in the Tetrahymena group I ribozyme. Biochemistry. 1999 Aug 24;38(34):10958–10975. doi: 10.1021/bi990388e. [DOI] [PubMed] [Google Scholar]
  57. Shan S. o., Yoshida A., Sun S., Piccirilli J. A., Herschlag D. Three metal ions at the active site of the Tetrahymena group I ribozyme. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12299–12304. doi: 10.1073/pnas.96.22.12299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Sjögren A. S., Pettersson E., Sjöberg B. M., Strömberg R. Metal ion interaction with cosubstrate in self-splicing of group I introns. Nucleic Acids Res. 1997 Feb 1;25(3):648–653. doi: 10.1093/nar/25.3.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Smith D., Pace N. R. Multiple magnesium ions in the ribonuclease P reaction mechanism. Biochemistry. 1993 May 25;32(20):5273–5281. doi: 10.1021/bi00071a001. [DOI] [PubMed] [Google Scholar]
  60. Sontheimer E. J., Sun S., Piccirilli J. A. Metal ion catalysis during splicing of premessenger RNA. Nature. 1997 Aug 21;388(6644):801–805. doi: 10.1038/42068. [DOI] [PubMed] [Google Scholar]
  61. Strobel S. A., Ortoleva-Donnelly L., Ryder S. P., Cate J. H., Moncoeur E. Complementary sets of noncanonical base pairs mediate RNA helix packing in the group I intron active site. Nat Struct Biol. 1998 Jan;5(1):60–66. doi: 10.1038/nsb0198-60. [DOI] [PubMed] [Google Scholar]
  62. Szewczak A. A., Ortoleva-Donnelly L., Ryder S. P., Moncoeur E., Strobel S. A. A minor groove RNA triple helix within the catalytic core of a group I intron. Nat Struct Biol. 1998 Dec;5(12):1037–1042. doi: 10.1038/4146. [DOI] [PubMed] [Google Scholar]
  63. Walter F., Murchie A. I., Thomson J. B., Lilley D. M. Structure and activity of the hairpin ribozyme in its natural junction conformation: effect of metal ions. Biochemistry. 1998 Oct 6;37(40):14195–14203. doi: 10.1021/bi981513+. [DOI] [PubMed] [Google Scholar]
  64. Warnecke J. M., Fürste J. P., Hardt W. D., Erdmann V. A., Hartmann R. K. Ribonuclease P (RNase P) RNA is converted to a Cd(2+)-ribozyme by a single Rp-phosphorothioate modification in the precursor tRNA at the RNase P cleavage site. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):8924–8928. doi: 10.1073/pnas.93.17.8924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Warnecke J. M., Held R., Busch S., Hartmann R. K. Role of metal ions in the hydrolysis reaction catalyzed by RNase P RNA from Bacillus subtilis. J Mol Biol. 1999 Jul 9;290(2):433–445. doi: 10.1006/jmbi.1999.2890. [DOI] [PubMed] [Google Scholar]
  66. Weinstein L. B., Jones B. C., Cosstick R., Cech T. R. A second catalytic metal ion in group I ribozyme. Nature. 1997 Aug 21;388(6644):805–808. doi: 10.1038/42076. [DOI] [PubMed] [Google Scholar]
  67. Wilcox Dean E. Binuclear Metallohydrolases. Chem Rev. 1996 Nov 7;96(7):2435–2458. doi: 10.1021/cr950043b. [DOI] [PubMed] [Google Scholar]
  68. Yoshida A., Shan S. o., Herschlag D., Piccirilli J. A. The role of the cleavage site 2'-hydroxyl in the Tetrahymena group I ribozyme reaction. Chem Biol. 2000 Feb;7(2):85–96. doi: 10.1016/s1074-5521(00)00074-0. [DOI] [PubMed] [Google Scholar]
  69. Yoshida A., Sun S., Piccirilli J. A. A new metal ion interaction in the Tetrahymena ribozyme reaction revealed by double sulfur substitution. Nat Struct Biol. 1999 Apr;6(4):318–321. doi: 10.1038/7551. [DOI] [PubMed] [Google Scholar]
  70. Zaug A. J., Grosshans C. A., Cech T. R. Sequence-specific endoribonuclease activity of the Tetrahymena ribozyme: enhanced cleavage of certain oligonucleotide substrates that form mismatched ribozyme-substrate complexes. Biochemistry. 1988 Dec 13;27(25):8924–8931. doi: 10.1021/bi00425a008. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES