Skip to main content
RNA logoLink to RNA
. 2000 Sep;6(9):1325–1334. doi: 10.1017/s1355838200992537

Coupled in vitro synthesis and splicing of RNA polymerase II transcripts.

S Ghosh 1, M A Garcia-Blanco 1
PMCID: PMC1370005  PMID: 10999609

Abstract

Compelling in vivo studies suggest a tight functional linkage between RNA polymerase II transcription and premessenger RNA splicing. At present, the specific interactions involved in this coupling are poorly understood and deserve investigation. To this end, we developed an in vitro system that permits study of coupled transcription and splicing. Transcripts generated by RNA polymerase II were accurately and efficiently spliced under reaction conditions that permitted both transcription and splicing to occur simultaneously. The splicing of RNA-polymerase-II-driven transcripts was accelerated relative to that of the same transcripts driven by T7 RNA polymerase. Moreover, the product of exon ligation was found associated with the DNA template in reactions driven by RNA polymerase II. These two findings indicate that transcription and splicing were coupled in the in vitro system driven by RNA polymerase II, and suggest that this system will be useful for the biochemical study of this coupling.

Full Text

The Full Text of this article is available as a PDF (921.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baurén G., Wieslander L. Splicing of Balbiani ring 1 gene pre-mRNA occurs simultaneously with transcription. Cell. 1994 Jan 14;76(1):183–192. doi: 10.1016/0092-8674(94)90182-1. [DOI] [PubMed] [Google Scholar]
  2. Bentley D. Coupling RNA polymerase II transcription with pre-mRNA processing. Curr Opin Cell Biol. 1999 Jun;11(3):347–351. doi: 10.1016/S0955-0674(99)80048-9. [DOI] [PubMed] [Google Scholar]
  3. Beyer A. L., Osheim Y. N. Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. Genes Dev. 1988 Jun;2(6):754–765. doi: 10.1101/gad.2.6.754. [DOI] [PubMed] [Google Scholar]
  4. Bohjanen P. R., Liu Y., Garcia-Blanco M. A. TAR RNA decoys inhibit tat-activated HIV-1 transcription after preinitiation complex formation. Nucleic Acids Res. 1997 Nov 15;25(22):4481–4486. doi: 10.1093/nar/25.22.4481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carstens R. P., McKeehan W. L., Garcia-Blanco M. A. An intronic sequence element mediates both activation and repression of rat fibroblast growth factor receptor 2 pre-mRNA splicing. Mol Cell Biol. 1998 Apr;18(4):2205–2217. doi: 10.1128/mcb.18.4.2205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cho E. J., Takagi T., Moore C. R., Buratowski S. mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev. 1997 Dec 15;11(24):3319–3326. doi: 10.1101/gad.11.24.3319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Corden J. L., Patturajan M. A CTD function linking transcription to splicing. Trends Biochem Sci. 1997 Nov;22(11):413–416. doi: 10.1016/s0968-0004(97)01125-0. [DOI] [PubMed] [Google Scholar]
  8. Cramer P., Cáceres J. F., Cazalla D., Kadener S., Muro A. F., Baralle F. E., Kornblihtt A. R. Coupling of transcription with alternative splicing: RNA pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer. Mol Cell. 1999 Aug;4(2):251–258. doi: 10.1016/s1097-2765(00)80372-x. [DOI] [PubMed] [Google Scholar]
  9. Cramer P., Pesce C. G., Baralle F. E., Kornblihtt A. R. Functional association between promoter structure and transcript alternative splicing. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11456–11460. doi: 10.1073/pnas.94.21.11456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Du L., Warren S. L. A functional interaction between the carboxy-terminal domain of RNA polymerase II and pre-mRNA splicing. J Cell Biol. 1997 Jan 13;136(1):5–18. doi: 10.1083/jcb.136.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dye M. J., Proudfoot N. J. Terminal exon definition occurs cotranscriptionally and promotes termination of RNA polymerase II. Mol Cell. 1999 Mar;3(3):371–378. doi: 10.1016/s1097-2765(00)80464-5. [DOI] [PubMed] [Google Scholar]
  13. Greenleaf A. L. Positive patches and negative noodles: linking RNA processing to transcription? Trends Biochem Sci. 1993 Apr;18(4):117–119. doi: 10.1016/0968-0004(93)90016-g. [DOI] [PubMed] [Google Scholar]
  14. Hardy S. F., Grabowski P. J., Padgett R. A., Sharp P. A. Cofactor requirements of splicing of purified messenger RNA precursors. Nature. 1984 Mar 22;308(5957):375–377. doi: 10.1038/308375a0. [DOI] [PubMed] [Google Scholar]
  15. Hernandez N., Keller W. Splicing of in vitro synthesized messenger RNA precursors in HeLa cell extracts. Cell. 1983 Nov;35(1):89–99. doi: 10.1016/0092-8674(83)90211-8. [DOI] [PubMed] [Google Scholar]
  16. Hirose Y., Manley J. L. RNA polymerase II is an essential mRNA polyadenylation factor. Nature. 1998 Sep 3;395(6697):93–96. doi: 10.1038/25786. [DOI] [PubMed] [Google Scholar]
  17. Hirose Y., Tacke R., Manley J. L. Phosphorylated RNA polymerase II stimulates pre-mRNA splicing. Genes Dev. 1999 May 15;13(10):1234–1239. doi: 10.1101/gad.13.10.1234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Izaurralde E., Lewis J., McGuigan C., Jankowska M., Darzynkiewicz E., Mattaj I. W. A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell. 1994 Aug 26;78(4):657–668. doi: 10.1016/0092-8674(94)90530-4. [DOI] [PubMed] [Google Scholar]
  19. Jiménez-García L. F., Spector D. L. In vivo evidence that transcription and splicing are coordinated by a recruiting mechanism. Cell. 1993 Apr 9;73(1):47–59. doi: 10.1016/0092-8674(93)90159-n. [DOI] [PubMed] [Google Scholar]
  20. Kim E., Du L., Bregman D. B., Warren S. L. Splicing factors associate with hyperphosphorylated RNA polymerase II in the absence of pre-mRNA. J Cell Biol. 1997 Jan 13;136(1):19–28. doi: 10.1083/jcb.136.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kole R., Weissman S. M. Accurate in vitro splicing of human beta-globin RNA. Nucleic Acids Res. 1982 Sep 25;10(18):5429–5445. doi: 10.1093/nar/10.18.5429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Konarska M. M., Padgett R. A., Sharp P. A. Recognition of cap structure in splicing in vitro of mRNA precursors. Cell. 1984 Oct;38(3):731–736. doi: 10.1016/0092-8674(84)90268-x. [DOI] [PubMed] [Google Scholar]
  23. McCracken S., Fong N., Yankulov K., Ballantyne S., Pan G., Greenblatt J., Patterson S. D., Wickens M., Bentley D. L. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature. 1997 Jan 23;385(6614):357–361. doi: 10.1038/385357a0. [DOI] [PubMed] [Google Scholar]
  24. Misteli T., Spector D. L. RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo. Mol Cell. 1999 Jun;3(6):697–705. doi: 10.1016/s1097-2765(01)80002-2. [DOI] [PubMed] [Google Scholar]
  25. Morris D. P., Phatnani H. P., Greenleaf A. L. Phospho-carboxyl-terminal domain binding and the role of a prolyl isomerase in pre-mRNA 3'-End formation. J Biol Chem. 1999 Oct 29;274(44):31583–31587. doi: 10.1074/jbc.274.44.31583. [DOI] [PubMed] [Google Scholar]
  26. Neugebauer K. M., Roth M. B. Transcription units as RNA processing units. Genes Dev. 1997 Dec 15;11(24):3279–3285. doi: 10.1101/gad.11.24.3279. [DOI] [PubMed] [Google Scholar]
  27. Neugebauer K. M., Stolk J. A., Roth M. B. A conserved epitope on a subset of SR proteins defines a larger family of Pre-mRNA splicing factors. J Cell Biol. 1995 May;129(4):899–908. doi: 10.1083/jcb.129.4.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Padgett R. A., Hardy S. F., Sharp P. A. Splicing of adenovirus RNA in a cell-free transcription system. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5230–5234. doi: 10.1073/pnas.80.17.5230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pasman Z., Garcia-Blanco M. A. The 5' and 3' splice sites come together via a three dimensional diffusion mechanism. Nucleic Acids Res. 1996 May 1;24(9):1638–1645. doi: 10.1093/nar/24.9.1638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Patturajan M., Wei X., Berezney R., Corden J. L. A nuclear matrix protein interacts with the phosphorylated C-terminal domain of RNA polymerase II. Mol Cell Biol. 1998 Apr;18(4):2406–2415. doi: 10.1128/mcb.18.4.2406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Roberts G. C., Gooding C., Mak H. Y., Proudfoot N. J., Smith C. W. Co-transcriptional commitment to alternative splice site selection. Nucleic Acids Res. 1998 Dec 15;26(24):5568–5572. doi: 10.1093/nar/26.24.5568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Steinmetz E. J. Pre-mRNA processing and the CTD of RNA polymerase II: the tail that wags the dog? Cell. 1997 May 16;89(4):491–494. doi: 10.1016/s0092-8674(00)80230-5. [DOI] [PubMed] [Google Scholar]
  33. Tacke R., Manley J. L. Functions of SR and Tra2 proteins in pre-mRNA splicing regulation. Proc Soc Exp Biol Med. 1999 Feb;220(2):59–63. doi: 10.1046/j.1525-1373.1999.d01-10.x. [DOI] [PubMed] [Google Scholar]
  34. Wada T., Takagi T., Yamaguchi Y., Ferdous A., Imai T., Hirose S., Sugimoto S., Yano K., Hartzog G. A., Winston F. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. 1998 Feb 1;12(3):343–356. doi: 10.1101/gad.12.3.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Weingärtner B., Keller W. Transcription and processing of adenoviral RNA by extracts from HeLa cells. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4092–4096. doi: 10.1073/pnas.78.7.4092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yuryev A., Patturajan M., Litingtung Y., Joshi R. V., Gentile C., Gebara M., Corden J. L. The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):6975–6980. doi: 10.1073/pnas.93.14.6975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zhang G., Taneja K. L., Singer R. H., Green M. R. Localization of pre-mRNA splicing in mammalian nuclei. Nature. 1994 Dec 22;372(6508):809–812. doi: 10.1038/372809a0. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES