Skip to main content
RNA logoLink to RNA
. 2001 Jan;7(1):29–43. doi: 10.1017/s1355838201001510

A ribozyme selected from variants of U6 snRNA promotes 2',5'-branch formation.

T Tuschl 1, P A Sharp 1, D P Bartel 1
PMCID: PMC1370066  PMID: 11214178

Abstract

In vitro selection was used to sample SnRNA-related sequences for ribozyme activities, and several 2',5'-branch-forming ribozymes were isolated. One such ribozyme is highly dependent upon an 11-nt motif that contains a conserved U6 snRNA sequence (ACAGAGA-box) known to be important for pre-mRNA splicing. The ribozyme reaction is similar to the first step of splicing in that an internal 2'-hydroxyl of an unpaired adenosine attacks at the 5'-phosphate of a guanosine. It differs in that the leaving group is diphosphate rather than a 5' exon. The finding that lariat formation can be accomplished by a small RNA with sequences related to U6 snRNA indicates that the RNA available in the spliceosome may be involved in RNA-catalyzed branch formation.

Full Text

The Full Text of this article is available as a PDF (6.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cech T. R. The generality of self-splicing RNA: relationship to nuclear mRNA splicing. Cell. 1986 Jan 31;44(2):207–210. doi: 10.1016/0092-8674(86)90751-8. [DOI] [PubMed] [Google Scholar]
  2. Chapman K. B., Boeke J. D. Isolation and characterization of the gene encoding yeast debranching enzyme. Cell. 1991 May 3;65(3):483–492. doi: 10.1016/0092-8674(91)90466-c. [DOI] [PubMed] [Google Scholar]
  3. Collins C. A., Guthrie C. Allele-specific genetic interactions between Prp8 and RNA active site residues suggest a function for Prp8 at the catalytic core of the spliceosome. Genes Dev. 1999 Aug 1;13(15):1970–1982. doi: 10.1101/gad.13.15.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Datta B., Weiner A. M. The phylogenetically invariant ACAGAGA and AGC sequences of U6 small nuclear RNA are more tolerant of mutation in human cells than in Saccharomyces cerevisiae. Mol Cell Biol. 1993 Sep;13(9):5377–5382. doi: 10.1128/mcb.13.9.5377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ekland E. H., Bartel D. P. The secondary structure and sequence optimization of an RNA ligase ribozyme. Nucleic Acids Res. 1995 Aug 25;23(16):3231–3238. doi: 10.1093/nar/23.16.3231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ekland E. H., Szostak J. W., Bartel D. P. Structurally complex and highly active RNA ligases derived from random RNA sequences. Science. 1995 Jul 21;269(5222):364–370. doi: 10.1126/science.7618102. [DOI] [PubMed] [Google Scholar]
  7. Fabrizio P., Abelson J. Two domains of yeast U6 small nuclear RNA required for both steps of nuclear precursor messenger RNA splicing. Science. 1990 Oct 19;250(4979):404–409. doi: 10.1126/science.2145630. [DOI] [PubMed] [Google Scholar]
  8. Guthrie C. Messenger RNA splicing in yeast: clues to why the spliceosome is a ribonucleoprotein. Science. 1991 Jul 12;253(5016):157–163. doi: 10.1126/science.1853200. [DOI] [PubMed] [Google Scholar]
  9. Guthrie C., Patterson B. Spliceosomal snRNAs. Annu Rev Genet. 1988;22:387–419. doi: 10.1146/annurev.ge.22.120188.002131. [DOI] [PubMed] [Google Scholar]
  10. Haas E. S., Armbruster D. W., Vucson B. M., Daniels C. J., Brown J. W. Comparative analysis of ribonuclease P RNA structure in Archaea. Nucleic Acids Res. 1996 Apr 1;24(7):1252–1259. doi: 10.1093/nar/24.7.1252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Haas E. S., Brown J. W. Evolutionary variation in bacterial RNase P RNAs. Nucleic Acids Res. 1998 Sep 15;26(18):4093–4099. doi: 10.1093/nar/26.18.4093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Helm M., Brulé H., Giegé R., Florentz C. More mistakes by T7 RNA polymerase at the 5' ends of in vitro-transcribed RNAs. RNA. 1999 May;5(5):618–621. doi: 10.1017/s1355838299982328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Herschlag D., Piccirilli J. A., Cech T. R. Ribozyme-catalyzed and nonenzymatic reactions of phosphate diesters: rate effects upon substitution of sulfur for a nonbridging phosphoryl oxygen atom. Biochemistry. 1991 May 21;30(20):4844–4854. doi: 10.1021/bi00234a003. [DOI] [PubMed] [Google Scholar]
  14. Hertel K. J., Maniatis T. Serine-arginine (SR)-rich splicing factors have an exon-independent function in pre-mRNA splicing. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):2651–2655. doi: 10.1073/pnas.96.6.2651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hwang D. Y., Cohen J. B. U1 snRNA promotes the selection of nearby 5' splice sites by U6 snRNA in mammalian cells. Genes Dev. 1996 Feb 1;10(3):338–350. doi: 10.1101/gad.10.3.338. [DOI] [PubMed] [Google Scholar]
  16. Incorvaia R., Padgett R. A. Base pairing with U6atac snRNA is required for 5' splice site activation of U12-dependent introns in vivo. RNA. 1998 Jun;4(6):709–718. doi: 10.1017/s1355838298980207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kahn J. D., Hearst J. E. Reversibility of nucleotide incorporation by Escherichia coli RNA polymerase, and its effect on fidelity. J Mol Biol. 1989 Jan 20;205(2):291–314. doi: 10.1016/0022-2836(89)90342-2. [DOI] [PubMed] [Google Scholar]
  18. Kandels-Lewis S., Séraphin B. Involvement of U6 snRNA in 5' splice site selection. Science. 1993 Dec 24;262(5142):2035–2039. doi: 10.1126/science.8266100. [DOI] [PubMed] [Google Scholar]
  19. Kim C. H., Abelson J. Site-specific crosslinks of yeast U6 snRNA to the pre-mRNA near the 5' splice site. RNA. 1996 Oct;2(10):995–1010. [PMC free article] [PubMed] [Google Scholar]
  20. Lesser C. F., Guthrie C. Mutations in U6 snRNA that alter splice site specificity: implications for the active site. Science. 1993 Dec 24;262(5142):1982–1988. doi: 10.1126/science.8266093. [DOI] [PubMed] [Google Scholar]
  21. Li Z., Brow D. A. A spontaneous duplication in U6 spliceosomal RNA uncouples the early and late functions of the ACAGA element in vivo. RNA. 1996 Sep;2(9):879–894. [PMC free article] [PubMed] [Google Scholar]
  22. Luo H. R., Moreau G. A., Levin N., Moore M. J. The human Prp8 protein is a component of both U2- and U12-dependent spliceosomes. RNA. 1999 Jul;5(7):893–908. doi: 10.1017/s1355838299990520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Luukkonen B. G., Séraphin B. A role for U2/U6 helix Ib in 5' splice site selection. RNA. 1998 Aug;4(8):915–927. doi: 10.1017/s1355838298980591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Luukkonen B. G., Séraphin B. Genetic interaction between U6 snRNA and the first intron nucleotide in Saccharomyces cerevisiae. RNA. 1998 Feb;4(2):167–180. [PMC free article] [PubMed] [Google Scholar]
  25. Madhani H. D., Bordonné R., Guthrie C. Multiple roles for U6 snRNA in the splicing pathway. Genes Dev. 1990 Dec;4(12B):2264–2277. doi: 10.1101/gad.4.12b.2264. [DOI] [PubMed] [Google Scholar]
  26. Madhani H. D., Guthrie C. A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Cell. 1992 Nov 27;71(5):803–817. doi: 10.1016/0092-8674(92)90556-r. [DOI] [PubMed] [Google Scholar]
  27. Madhani H. D., Guthrie C. Dynamic RNA-RNA interactions in the spliceosome. Annu Rev Genet. 1994;28:1–26. doi: 10.1146/annurev.ge.28.120194.000245. [DOI] [PubMed] [Google Scholar]
  28. Madhani H. D., Guthrie C. Randomization-selection analysis of snRNAs in vivo: evidence for a tertiary interaction in the spliceosome. Genes Dev. 1994 May 1;8(9):1071–1086. doi: 10.1101/gad.8.9.1071. [DOI] [PubMed] [Google Scholar]
  29. Maschhoff K. L., Padgett R. A. The stereochemical course of the first step of pre-mRNA splicing. Nucleic Acids Res. 1993 Nov 25;21(23):5456–5462. doi: 10.1093/nar/21.23.5456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. McPheeters D. S. Interactions of the yeast U6 RNA with the pre-mRNA branch site. RNA. 1996 Nov;2(11):1110–1123. [PMC free article] [PubMed] [Google Scholar]
  31. Michel F., Ferat J. L. Structure and activities of group II introns. Annu Rev Biochem. 1995;64:435–461. doi: 10.1146/annurev.bi.64.070195.002251. [DOI] [PubMed] [Google Scholar]
  32. Milligan J. F., Uhlenbeck O. C. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 1989;180:51–62. doi: 10.1016/0076-6879(89)80091-6. [DOI] [PubMed] [Google Scholar]
  33. Molinaro M., Tinoco I., Jr Use of ultra stable UNCG tetraloop hairpins to fold RNA structures: thermodynamic and spectroscopic applications. Nucleic Acids Res. 1995 Aug 11;23(15):3056–3063. doi: 10.1093/nar/23.15.3056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Moore M. J., Sharp P. A. Evidence for two active sites in the spliceosome provided by stereochemistry of pre-mRNA splicing. Nature. 1993 Sep 23;365(6444):364–368. doi: 10.1038/365364a0. [DOI] [PubMed] [Google Scholar]
  35. Mörl M., Niemer I., Schmelzer C. New reactions catalyzed by a group II intron ribozyme with RNA and DNA substrates. Cell. 1992 Sep 4;70(5):803–810. doi: 10.1016/0092-8674(92)90313-2. [DOI] [PubMed] [Google Scholar]
  36. Nam K., Hudson R. H., Chapman K. B., Ganeshan K., Damha M. J., Boeke J. D. Yeast lariat debranching enzyme. Substrate and sequence specificity. J Biol Chem. 1994 Aug 12;269(32):20613–20621. [PubMed] [Google Scholar]
  37. Newman A. J. The role of U5 snRNP in pre-mRNA splicing. EMBO J. 1997 Oct 1;16(19):5797–5800. doi: 10.1093/emboj/16.19.5797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. O'Keefe R. T., Norman C., Newman A. J. The invariant U5 snRNA loop 1 sequence is dispensable for the first catalytic step of pre-mRNA splicing in yeast. Cell. 1996 Aug 23;86(4):679–689. doi: 10.1016/s0092-8674(00)80140-3. [DOI] [PubMed] [Google Scholar]
  39. Padgett R. A., Podar M., Boulanger S. C., Perlman P. S. The stereochemical course of group II intron self-splicing. Science. 1994 Dec 9;266(5191):1685–1688. doi: 10.1126/science.7527587. [DOI] [PubMed] [Google Scholar]
  40. Pan T., Jakacka M. Multiple substrate binding sites in the ribozyme from Bacillus subtilis RNase P. EMBO J. 1996 May 1;15(9):2249–2255. [PMC free article] [PubMed] [Google Scholar]
  41. Pan T., Uhlenbeck O. C. In vitro selection of RNAs that undergo autolytic cleavage with Pb2+. Biochemistry. 1992 Apr 28;31(16):3887–3895. doi: 10.1021/bi00131a001. [DOI] [PubMed] [Google Scholar]
  42. Qin P. Z., Pyle A. M. The architectural organization and mechanistic function of group II intron structural elements. Curr Opin Struct Biol. 1998 Jun;8(3):301–308. doi: 10.1016/s0959-440x(98)80062-6. [DOI] [PubMed] [Google Scholar]
  43. Query C. C., Strobel S. A., Sharp P. A. Three recognition events at the branch-site adenine. EMBO J. 1996 Mar 15;15(6):1392–1402. [PMC free article] [PubMed] [Google Scholar]
  44. Reyes J. L., Gustafson E. H., Luo H. R., Moore M. J., Konarska M. M. The C-terminal region of hPrp8 interacts with the conserved GU dinucleotide at the 5' splice site. RNA. 1999 Feb;5(2):167–179. doi: 10.1017/s1355838299981785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Robertson M. P., Ellington A. D. In vitro selection of an allosteric ribozyme that transduces analytes to amplicons. Nat Biotechnol. 1999 Jan;17(1):62–66. doi: 10.1038/5236. [DOI] [PubMed] [Google Scholar]
  46. Roiha H., Shuster E. O., Brow D. A., Guthrie C. Small nuclear RNAs from budding yeasts: phylogenetic comparisons reveal extensive size variation. Gene. 1989 Oct 15;82(1):137–144. doi: 10.1016/0378-1119(89)90038-3. [DOI] [PubMed] [Google Scholar]
  47. Sabeti P. C., Unrau P. J., Bartel D. P. Accessing rare activities from random RNA sequences: the importance of the length of molecules in the starting pool. Chem Biol. 1997 Oct;4(10):767–774. doi: 10.1016/s1074-5521(97)90315-x. [DOI] [PubMed] [Google Scholar]
  48. Sharp P. A., Burge C. B. Classification of introns: U2-type or U12-type. Cell. 1997 Dec 26;91(7):875–879. doi: 10.1016/s0092-8674(00)80479-1. [DOI] [PubMed] [Google Scholar]
  49. Sharp P. A. On the origin of RNA splicing and introns. Cell. 1985 Sep;42(2):397–400. doi: 10.1016/0092-8674(85)90092-3. [DOI] [PubMed] [Google Scholar]
  50. Siatecka M., Reyes J. L., Konarska M. M. Functional interactions of Prp8 with both splice sites at the spliceosomal catalytic center. Genes Dev. 1999 Aug 1;13(15):1983–1993. doi: 10.1101/gad.13.15.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Sontheimer E. J., Gordon P. M., Piccirilli J. A. Metal ion catalysis during group II intron self-splicing: parallels with the spliceosome. Genes Dev. 1999 Jul 1;13(13):1729–1741. doi: 10.1101/gad.13.13.1729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Sontheimer E. J., Steitz J. A. The U5 and U6 small nuclear RNAs as active site components of the spliceosome. Science. 1993 Dec 24;262(5142):1989–1996. doi: 10.1126/science.8266094. [DOI] [PubMed] [Google Scholar]
  53. Sontheimer E. J., Steitz J. A. The U5 and U6 small nuclear RNAs as active site components of the spliceosome. Science. 1993 Dec 24;262(5142):1989–1996. doi: 10.1126/science.8266094. [DOI] [PubMed] [Google Scholar]
  54. Sontheimer E. J., Sun S., Piccirilli J. A. Metal ion catalysis during splicing of premessenger RNA. Nature. 1997 Aug 21;388(6644):801–805. doi: 10.1038/42068. [DOI] [PubMed] [Google Scholar]
  55. Stage-Zimmermann T. K., Uhlenbeck O. C. Hammerhead ribozyme kinetics. RNA. 1998 Aug;4(8):875–889. doi: 10.1017/s1355838298980876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Staley J. P., Guthrie C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell. 1998 Feb 6;92(3):315–326. doi: 10.1016/s0092-8674(00)80925-3. [DOI] [PubMed] [Google Scholar]
  57. Steitz T. A., Steitz J. A. A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6498–6502. doi: 10.1073/pnas.90.14.6498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Sun J. S., Manley J. L. A novel U2-U6 snRNA structure is necessary for mammalian mRNA splicing. Genes Dev. 1995 Apr 1;9(7):843–854. doi: 10.1101/gad.9.7.843. [DOI] [PubMed] [Google Scholar]
  59. Ségault V., Will C. L., Polycarpou-Schwarz M., Mattaj I. W., Branlant C., Lührmann R. Conserved loop I of U5 small nuclear RNA is dispensable for both catalytic steps of pre-mRNA splicing in HeLa nuclear extracts. Mol Cell Biol. 1999 Apr;19(4):2782–2790. doi: 10.1128/mcb.19.4.2782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Tuschl T., Sharp P. A., Bartel D. P. Selection in vitro of novel ribozymes from a partially randomized U2 and U6 snRNA library. EMBO J. 1998 May 1;17(9):2637–2650. doi: 10.1093/emboj/17.9.2637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Umen J. G., Guthrie C. The second catalytic step of pre-mRNA splicing. RNA. 1995 Nov;1(9):869–885. [PMC free article] [PubMed] [Google Scholar]
  62. Wassarman D. A., Steitz J. A. Interactions of small nuclear RNA's with precursor messenger RNA during in vitro splicing. Science. 1992 Sep 25;257(5078):1918–1925. doi: 10.1126/science.1411506. [DOI] [PubMed] [Google Scholar]
  63. Weiner A. M. mRNA splicing and autocatalytic introns: distant cousins or the products of chemical determinism? Cell. 1993 Jan 29;72(2):161–164. doi: 10.1016/0092-8674(93)90654-9. [DOI] [PubMed] [Google Scholar]
  64. Welch M., Majerfeld I., Yarus M. 23S rRNA similarity from selection for peptidyl transferase mimicry. Biochemistry. 1997 Jun 3;36(22):6614–6623. doi: 10.1021/bi963135j. [DOI] [PubMed] [Google Scholar]
  65. Wolff T., Menssen R., Hammel J., Bindereif A. Splicing function of mammalian U6 small nuclear RNA: conserved positions in central domain and helix I are essential during the first and second step of pre-mRNA splicing. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):903–907. doi: 10.1073/pnas.91.3.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Wong I., Patel S. S., Johnson K. A. An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics. Biochemistry. 1991 Jan 15;30(2):526–537. doi: 10.1021/bi00216a030. [DOI] [PubMed] [Google Scholar]
  67. Yan D., Ares M., Jr Invariant U2 RNA sequences bordering the branchpoint recognition region are essential for interaction with yeast SF3a and SF3b subunits. Mol Cell Biol. 1996 Mar;16(3):818–828. doi: 10.1128/mcb.16.3.818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Zhang B., Cech T. R. Peptidyl-transferase ribozymes: trans reactions, structural characterization and ribosomal RNA-like features. Chem Biol. 1998 Oct;5(10):539–553. doi: 10.1016/s1074-5521(98)90113-2. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES