Skip to main content
RNA logoLink to RNA
. 2001 Mar;7(3):471–482. doi: 10.1017/s1355838201002552

Functions of SR proteins in the U12-dependent AT-AC pre-mRNA splicing pathway.

M L Hastings 1, A R Krainer 1
PMCID: PMC1370102  PMID: 11333026

Abstract

SR proteins play critical roles in the major pre-mRNA splicing pathway. A second pathway processes U12-dependent AT-AC introns. We demonstrate, by biochemical complementation, the requirement for SR proteins in splicing of AT-AC introns. Whereas SR proteins were sufficient to activate splicing of a P120 AT-AC intron, splicing of a sodium channel AT-AC intron required an additional nuclear fraction. Individual recombinant SR proteins promoted splicing of both substrates, but displayed marked preferences. SR proteins supported basal AT-AC splicing, and also splicing stimulation via a downstream enhancer or conventional 5' splice site. Analysis of chimeric transcripts revealed that information dispersed throughout exons and introns dictates SR protein specificity and the requirement for the additional nuclear fraction. Thus, SR proteins function in both major and minor splicing pathways, and in coordinating the activities of both spliceosomes via exon definition. These results suggest that despite the substantial differences in intron consensus sequences and in four of the five snRNPs in each spliceosome, at least some of the interactions involving SR proteins are conserved between the two pathways.

Full Text

The Full Text of this article is available as a PDF (755.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abovich N., Rosbash M. Cross-intron bridging interactions in the yeast commitment complex are conserved in mammals. Cell. 1997 May 2;89(3):403–412. doi: 10.1016/s0092-8674(00)80221-4. [DOI] [PubMed] [Google Scholar]
  2. Birney E., Kumar S., Krainer A. R. Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucleic Acids Res. 1993 Dec 25;21(25):5803–5816. doi: 10.1093/nar/21.25.5803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blencowe B. J. Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases. Trends Biochem Sci. 2000 Mar;25(3):106–110. doi: 10.1016/s0968-0004(00)01549-8. [DOI] [PubMed] [Google Scholar]
  4. Blencowe B. J., Issner R., Kim J., Mccaw P., Sharp P. A. New proteins related to the Ser-Arg family of splicing factors. RNA. 1995 Oct;1(8):852–865. [PMC free article] [PubMed] [Google Scholar]
  5. Blencowe B. J., Issner R., Nickerson J. A., Sharp P. A. A coactivator of pre-mRNA splicing. Genes Dev. 1998 Apr 1;12(7):996–1009. doi: 10.1101/gad.12.7.996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burge C. B., Padgett R. A., Sharp P. A. Evolutionary fates and origins of U12-type introns. Mol Cell. 1998 Dec;2(6):773–785. doi: 10.1016/s1097-2765(00)80292-0. [DOI] [PubMed] [Google Scholar]
  7. Exon P. D., Dixon K., Malins J. M. Insulin antibodies in diabetic pregnancy. Lancet. 1974 Jul 20;2(7873):126–128. doi: 10.1016/s0140-6736(74)91555-4. [DOI] [PubMed] [Google Scholar]
  8. Frilander M. J., Steitz J. A. Dynamic exchanges of RNA interactions leading to catalytic core formation in the U12-dependent spliceosome. Mol Cell. 2001 Jan;7(1):217–226. doi: 10.1016/s1097-2765(01)00169-1. [DOI] [PubMed] [Google Scholar]
  9. Frilander M. J., Steitz J. A. Initial recognition of U12-dependent introns requires both U11/5' splice-site and U12/branchpoint interactions. Genes Dev. 1999 Apr 1;13(7):851–863. doi: 10.1101/gad.13.7.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Graveley B. R. Sorting out the complexity of SR protein functions. RNA. 2000 Sep;6(9):1197–1211. doi: 10.1017/s1355838200000960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Guth S., Martínez C., Gaur R. K., Valcárcel J. Evidence for substrate-specific requirement of the splicing factor U2AF(35) and for its function after polypyrimidine tract recognition by U2AF(65). Mol Cell Biol. 1999 Dec;19(12):8263–8271. doi: 10.1128/mcb.19.12.8263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hall S. L., Padgett R. A. Requirement of U12 snRNA for in vivo splicing of a minor class of eukaryotic nuclear pre-mRNA introns. Science. 1996 Mar 22;271(5256):1716–1718. doi: 10.1126/science.271.5256.1716. [DOI] [PubMed] [Google Scholar]
  13. Hertel K. J., Maniatis T. Serine-arginine (SR)-rich splicing factors have an exon-independent function in pre-mRNA splicing. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):2651–2655. doi: 10.1073/pnas.96.6.2651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hertel K. J., Maniatis T. The function of multisite splicing enhancers. Mol Cell. 1998 Feb;1(3):449–455. doi: 10.1016/s1097-2765(00)80045-3. [DOI] [PubMed] [Google Scholar]
  15. Hoffman B. E., Grabowski P. J. U1 snRNP targets an essential splicing factor, U2AF65, to the 3' splice site by a network of interactions spanning the exon. Genes Dev. 1992 Dec;6(12B):2554–2568. doi: 10.1101/gad.6.12b.2554. [DOI] [PubMed] [Google Scholar]
  16. Kohtz J. D., Jamison S. F., Will C. L., Zuo P., Lührmann R., Garcia-Blanco M. A., Manley J. L. Protein-protein interactions and 5'-splice-site recognition in mammalian mRNA precursors. Nature. 1994 Mar 10;368(6467):119–124. doi: 10.1038/368119a0. [DOI] [PubMed] [Google Scholar]
  17. Konarska M. M. Analysis of splicing complexes and small nuclear ribonucleoprotein particles by native gel electrophoresis. Methods Enzymol. 1989;180:442–453. doi: 10.1016/0076-6879(89)80116-8. [DOI] [PubMed] [Google Scholar]
  18. Krainer A. R., Conway G. C., Kozak D. Purification and characterization of pre-mRNA splicing factor SF2 from HeLa cells. Genes Dev. 1990 Jul;4(7):1158–1171. doi: 10.1101/gad.4.7.1158. [DOI] [PubMed] [Google Scholar]
  19. Krainer A. R., Conway G. C., Kozak D. The essential pre-mRNA splicing factor SF2 influences 5' splice site selection by activating proximal sites. Cell. 1990 Jul 13;62(1):35–42. doi: 10.1016/0092-8674(90)90237-9. [DOI] [PubMed] [Google Scholar]
  20. Krainer A. R., Maniatis T., Ruskin B., Green M. R. Normal and mutant human beta-globin pre-mRNAs are faithfully and efficiently spliced in vitro. Cell. 1984 Apr;36(4):993–1005. doi: 10.1016/0092-8674(84)90049-7. [DOI] [PubMed] [Google Scholar]
  21. Liu H. X., Chew S. L., Cartegni L., Zhang M. Q., Krainer A. R. Exonic splicing enhancer motif recognized by human SC35 under splicing conditions. Mol Cell Biol. 2000 Feb;20(3):1063–1071. doi: 10.1128/mcb.20.3.1063-1071.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Liu H. X., Zhang M., Krainer A. R. Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev. 1998 Jul 1;12(13):1998–2012. doi: 10.1101/gad.12.13.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Luo H. R., Moreau G. A., Levin N., Moore M. J. The human Prp8 protein is a component of both U2- and U12-dependent spliceosomes. RNA. 1999 Jul;5(7):893–908. doi: 10.1017/s1355838299990520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mayeda A., Badolato J., Kobayashi R., Zhang M. Q., Gardiner E. M., Krainer A. R. Purification and characterization of human RNPS1: a general activator of pre-mRNA splicing. EMBO J. 1999 Aug 16;18(16):4560–4570. doi: 10.1093/emboj/18.16.4560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mayeda A., Krainer A. R. Mammalian in vitro splicing assays. Methods Mol Biol. 1999;118:315–321. doi: 10.1385/1-59259-676-2:315. [DOI] [PubMed] [Google Scholar]
  26. Mayeda A., Krainer A. R. Preparation of HeLa cell nuclear and cytosolic S100 extracts for in vitro splicing. Methods Mol Biol. 1999;118:309–314. doi: 10.1385/1-59259-676-2:309. [DOI] [PubMed] [Google Scholar]
  27. Montzka K. A., Steitz J. A. Additional low-abundance human small nuclear ribonucleoproteins: U11, U12, etc. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8885–8889. doi: 10.1073/pnas.85.23.8885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Murray M. V., Kobayashi R., Krainer A. R. The type 2C Ser/Thr phosphatase PP2Cgamma is a pre-mRNA splicing factor. Genes Dev. 1999 Jan 1;13(1):87–97. doi: 10.1101/gad.13.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Robberson B. L., Cote G. J., Berget S. M. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol Cell Biol. 1990 Jan;10(1):84–94. doi: 10.1128/mcb.10.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Roscigno R. F., Garcia-Blanco M. A. SR proteins escort the U4/U6.U5 tri-snRNP to the spliceosome. RNA. 1995 Sep;1(7):692–706. [PMC free article] [PubMed] [Google Scholar]
  31. Screaton G. R., Cáceres J. F., Mayeda A., Bell M. V., Plebanski M., Jackson D. G., Bell J. I., Krainer A. R. Identification and characterization of three members of the human SR family of pre-mRNA splicing factors. EMBO J. 1995 Sep 1;14(17):4336–4349. doi: 10.1002/j.1460-2075.1995.tb00108.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tacke R., Manley J. L. The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA binding specificities. EMBO J. 1995 Jul 17;14(14):3540–3551. doi: 10.1002/j.1460-2075.1995.tb07360.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tarn W. Y., Steitz J. A. A novel spliceosome containing U11, U12, and U5 snRNPs excises a minor class (AT-AC) intron in vitro. Cell. 1996 Mar 8;84(5):801–811. doi: 10.1016/s0092-8674(00)81057-0. [DOI] [PubMed] [Google Scholar]
  34. Tarn W. Y., Steitz J. A. Highly diverged U4 and U6 small nuclear RNAs required for splicing rare AT-AC introns. Science. 1996 Sep 27;273(5283):1824–1832. doi: 10.1126/science.273.5283.1824. [DOI] [PubMed] [Google Scholar]
  35. Tarn W. Y., Steitz J. A. Modulation of 5' splice site choice in pre-messenger RNA by two distinct steps. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2504–2508. doi: 10.1073/pnas.92.7.2504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tian M., Maniatis T. A splicing enhancer complex controls alternative splicing of doublesex pre-mRNA. Cell. 1993 Jul 16;74(1):105–114. doi: 10.1016/0092-8674(93)90298-5. [DOI] [PubMed] [Google Scholar]
  37. Will C. L., Schneider C., Reed R., Lührmann R. Identification of both shared and distinct proteins in the major and minor spliceosomes. Science. 1999 Jun 18;284(5422):2003–2005. doi: 10.1126/science.284.5422.2003. [DOI] [PubMed] [Google Scholar]
  38. Wu J. Y., Maniatis T. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell. 1993 Dec 17;75(6):1061–1070. doi: 10.1016/0092-8674(93)90316-i. [DOI] [PubMed] [Google Scholar]
  39. Wu Q., Krainer A. R. AT-AC pre-mRNA splicing mechanisms and conservation of minor introns in voltage-gated ion channel genes. Mol Cell Biol. 1999 May;19(5):3225–3236. doi: 10.1128/mcb.19.5.3225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wu Q., Krainer A. R. Purine-rich enhancers function in the AT-AC pre-mRNA splicing pathway and do so independently of intact U1 snRNP. RNA. 1998 Dec;4(12):1664–1673. doi: 10.1017/s1355838298981432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wu Q., Krainer A. R. Splicing of a divergent subclass of AT-AC introns requires the major spliceosomal snRNAs. RNA. 1997 Jun;3(6):586–601. [PMC free article] [PubMed] [Google Scholar]
  42. Wu Q., Krainer A. R. U1-mediated exon definition interactions between AT-AC and GT-AG introns. Science. 1996 Nov 8;274(5289):1005–1008. doi: 10.1126/science.274.5289.1005. [DOI] [PubMed] [Google Scholar]
  43. Wu S., Romfo C. M., Nilsen T. W., Green M. R. Functional recognition of the 3' splice site AG by the splicing factor U2AF35. Nature. 1999 Dec 16;402(6763):832–835. doi: 10.1038/45590. [DOI] [PubMed] [Google Scholar]
  44. Zahler A. M. Purification of SR protein splicing factors. Methods Mol Biol. 1999;118:419–432. doi: 10.1385/1-59259-676-2:419. [DOI] [PubMed] [Google Scholar]
  45. Zamore P. D., Green M. R. Identification, purification, and biochemical characterization of U2 small nuclear ribonucleoprotein auxiliary factor. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9243–9247. doi: 10.1073/pnas.86.23.9243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zuo P., Maniatis T. The splicing factor U2AF35 mediates critical protein-protein interactions in constitutive and enhancer-dependent splicing. Genes Dev. 1996 Jun 1;10(11):1356–1368. doi: 10.1101/gad.10.11.1356. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES