Skip to main content
RNA logoLink to RNA
. 2002 Jan;8(1):97–109. doi: 10.1017/s1355838202014929

RNase E plays an essential role in the maturation of Escherichia coli tRNA precursors.

Zhongwei Li 1, Murray P Deutscher 1
PMCID: PMC1370232  PMID: 11871663

Abstract

Conversion of tRNA precursors to their mature forms requires the action of both endo- and exoribonucleases. Although studies over many years identified the endoribonuclease, RNase P, and several exoribonucleases as the enzymes responsible for generating the mature 5' and 3' termini, respectively, of Escherichia coli tRNAs, relatively little is known about how tRNAs are separated from long multimeric or multifunction transcripts, or from long leader and trailer sequences. To examine this question, the tRNA products that accumulate in mutant strains devoid of multiple exoribonucleases plus one or several endoribonucleases were analyzed by northern analysis. We find that the multifunction tyrT transcript, which contains two tRNA(Tyr)1 sequences separated by a 209-nt spacer region plus a downstream mRNA, is cleaved at three sites in the spacer region by the endoribonuclease, RNase E. When both RNase E and RNase P are absent, a product containing both tRNAs accumulates. Two multimeric tRNA transcripts, those for tRNA Arg-His-Leu-Pro and tRNA Gly-Cys-Leu also require RNase E for maturation. For the former transcript, products with long 3' extensions on tRNA(Arg), tRNA(His), and tRNA(Pro), as well as the primary transcript, accumulate in the absence of RNase E. For the latter transcript, RNase E cleaves downstream of each tRNA. Little processing of either multimeric transcript occurs in the absence of both RNase E and RNase P. These data indicate that RNase E is a major contributor to the initial processing of E. coli tRNA transcripts, providing substrates for final maturation by RNase P and the 3' exoribonucleases. Based on this new information, a detailed model for tRNA maturation is proposed.

Full Text

The Full Text of this article is available as a PDF (589.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bikoff E. K., Gefter M. L. In vitro synthesis of transfer RNA. I. Purification of required components. J Biol Chem. 1975 Aug 25;250(16):6240–6247. [PubMed] [Google Scholar]
  2. Bösl M., Kersten H. A novel RNA product of the tyrT operon of Escherichia coli. Nucleic Acids Res. 1991 Nov 11;19(21):5863–5870. doi: 10.1093/nar/19.21.5863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Deutscher M. P., Hilderman R. H. Isolation and partial characterization of Escherichia coli mutants with low levels of transfer ribonucleic acid nucleotidyltransferase. J Bacteriol. 1974 May;118(2):621–627. doi: 10.1128/jb.118.2.621-627.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Deutscher M. P. Ribonucleases, tRNA nucleotidyltransferase, and the 3' processing of tRNA. Prog Nucleic Acid Res Mol Biol. 1990;39:209–240. doi: 10.1016/s0079-6603(08)60628-5. [DOI] [PubMed] [Google Scholar]
  5. Ghora B. K., Apirion D. Structural analysis and in vitro processing to p5 rRNA of a 9S RNA molecule isolated from an rne mutant of E. coli. Cell. 1978 Nov;15(3):1055–1066. doi: 10.1016/0092-8674(78)90289-1. [DOI] [PubMed] [Google Scholar]
  6. Hsu L. M., Klee H. J., Zagorski J., Fournier M. J. Structure of an Escherichia coli tRNA operon containing linked genes for arginine, histidine, leucine, and proline tRNAs. J Bacteriol. 1984 Jun;158(3):934–942. doi: 10.1128/jb.158.3.934-942.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kelly K. O., Deutscher M. P. The presence of only one of five exoribonucleases is sufficient to support the growth of Escherichia coli. J Bacteriol. 1992 Oct;174(20):6682–6684. doi: 10.1128/jb.174.20.6682-6684.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Komine Y., Adachi T., Inokuchi H., Ozeki H. Genomic organization and physical mapping of the transfer RNA genes in Escherichia coli K12. J Mol Biol. 1990 Apr 20;212(4):579–598. doi: 10.1016/0022-2836(90)90224-A. [DOI] [PubMed] [Google Scholar]
  9. Li Z., Deutscher M. P. Maturation pathways for E. coli tRNA precursors: a random multienzyme process in vivo. Cell. 1996 Aug 9;86(3):503–512. doi: 10.1016/s0092-8674(00)80123-3. [DOI] [PubMed] [Google Scholar]
  10. Li Z., Deutscher M. P. The role of individual exoribonucleases in processing at the 3' end of Escherichia coli tRNA precursors. J Biol Chem. 1994 Feb 25;269(8):6064–6071. [PubMed] [Google Scholar]
  11. Li Z., Deutscher M. P. The tRNA processing enzyme RNase T is essential for maturation of 5S RNA. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6883–6886. doi: 10.1073/pnas.92.15.6883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Li Z., Pandit S., Deutscher M. P. 3' exoribonucleolytic trimming is a common feature of the maturation of small, stable RNAs in Escherichia coli. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):2856–2861. doi: 10.1073/pnas.95.6.2856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Li Z., Pandit S., Deutscher M. P. Maturation of 23S ribosomal RNA requires the exoribonuclease RNase T. RNA. 1999 Jan;5(1):139–146. doi: 10.1017/s1355838299981669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Li Z., Pandit S., Deutscher M. P. RNase G (CafA protein) and RNase E are both required for the 5' maturation of 16S ribosomal RNA. EMBO J. 1999 May 17;18(10):2878–2885. doi: 10.1093/emboj/18.10.2878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lin-Chao S., Cohen S. N. The rate of processing and degradation of antisense RNAI regulates the replication of ColE1-type plasmids in vivo. Cell. 1991 Jun 28;65(7):1233–1242. doi: 10.1016/0092-8674(91)90018-t. [DOI] [PubMed] [Google Scholar]
  16. McDowall K. J., Kaberdin V. R., Wu S. W., Cohen S. N., Lin-Chao S. Site-specific RNase E cleavage of oligonucleotides and inhibition by stem-loops. Nature. 1995 Mar 16;374(6519):287–290. doi: 10.1038/374287a0. [DOI] [PubMed] [Google Scholar]
  17. McDowall K. J., Lin-Chao S., Cohen S. N. A+U content rather than a particular nucleotide order determines the specificity of RNase E cleavage. J Biol Chem. 1994 Apr 8;269(14):10790–10796. [PubMed] [Google Scholar]
  18. Ray B. K., Apirion D. RNAase P is dependent on RNAase E action in processing monomeric RNA precursors that accumulate in an RNAase E- mutant of Escherichia coli. J Mol Biol. 1981 Jul 15;149(4):599–617. doi: 10.1016/0022-2836(81)90349-1. [DOI] [PubMed] [Google Scholar]
  19. Ray B. K., Apirion D. Transfer RNA precursors are accumulated in Escherichia coli in the absence of RNase E. Eur J Biochem. 1981 Mar;114(3):517–524. doi: 10.1111/j.1432-1033.1981.tb05175.x. [DOI] [PubMed] [Google Scholar]
  20. Reuven N. B., Deutscher M. P. Multiple exoribonucleases are required for the 3' processing of Escherichia coli tRNA precursors in vivo. FASEB J. 1993 Jan;7(1):143–148. doi: 10.1096/fasebj.7.1.8422961. [DOI] [PubMed] [Google Scholar]
  21. Rossi J., Egan J., Hudson L., Landy A. The tyrT locus: termination and processing of a complex transcript. Cell. 1981 Nov;26(3 Pt 1):305–314. doi: 10.1016/0092-8674(81)90199-9. [DOI] [PubMed] [Google Scholar]
  22. Régnier P., Arraiano C. M. Degradation of mRNA in bacteria: emergence of ubiquitous features. Bioessays. 2000 Mar;22(3):235–244. doi: 10.1002/(SICI)1521-1878(200003)22:3<235::AID-BIES5>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  23. Sakano H., Shimura Y. Characterization and in vitro processing of transfer RNA precursors accumulated in a temperature-sensitive mutant of Escherichia coli. J Mol Biol. 1978 Aug 15;123(3):287–326. doi: 10.1016/0022-2836(78)90082-7. [DOI] [PubMed] [Google Scholar]
  24. Schedl P., Roberts J., Primakoff P. In vitro processing of E. coli tRNA precursors. Cell. 1976 Aug;8(4):581–594. doi: 10.1016/0092-8674(76)90226-9. [DOI] [PubMed] [Google Scholar]
  25. Sekiya T., Contreras R., Takeya T., Khorana H. G. Total synthesis of a tyrosine suppressor transfer RNA gene. XVII. Transcription, in vitro, of the synthetic gene and processing of the primary transcript to transfer RNA. J Biol Chem. 1979 Jul 10;254(13):5802–5816. [PubMed] [Google Scholar]
  26. Steege D. A. Emerging features of mRNA decay in bacteria. RNA. 2000 Aug;6(8):1079–1090. doi: 10.1017/s1355838200001023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Vögeli G., Stewart T. S., McCutchan T., Söll D. Isolation of Escherichia coli precursor tRNAs containing modified nucleoside Q. J Biol Chem. 1977 Apr 10;252(7):2311–2318. [PubMed] [Google Scholar]
  28. Wachi M., Umitsuki G., Shimizu M., Takada A., Nagai K. Escherichia coli cafA gene encodes a novel RNase, designated as RNase G, involved in processing of the 5' end of 16S rRNA. Biochem Biophys Res Commun. 1999 Jun 7;259(2):483–488. doi: 10.1006/bbrc.1999.0806. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES