Skip to main content
RNA logoLink to RNA
. 2002 Aug;8(8):1011–1033. doi: 10.1017/s1355838202026092

The 5' and 3' domains of yeast U6 snRNA: Lsm proteins facilitate binding of Prp24 protein to the U6 telestem region.

Daniel E Ryan 1, Scott W Stevens 1, John Abelson 1
PMCID: PMC1370313  PMID: 12212846

Abstract

The 5' and 3' domains of yeast U6 snRNA contain sequences that are thought to be important for binding to Prp24 and Lsm proteins. By extensive mutational analysis of yeast U6 snRNA, we confirmed that the 3' terminal uridine tract of U6 snRNA is important for U6 binding to Lsm proteins in yeast. Binding of Prp24 protein to U6 RNA is dependent on or is strongly enhanced by U6 binding of Lsm proteins. This supports a model for U6 snRNP assembly in which U6 RNA binds to the Lsm2-8 core prior to binding Prp24 protein. Using compensatory base-pairing analysis, we show that at least half of the recently identified U6 telestem as well as a nucleotide sequence in the other half of the telestem are important for binding of U6 RNA to Prp24 protein. Surprisingly, disruption of base pairing in the unconfirmed half of the telestem enhanced U6-Prp24 binding. Truncation of the entire 3' terminal domain or nearly the entire 5' terminal domain of yeast U6 allowed for detectable levels of splicing to proceed in vitro. In addition to gaining knowledge of the function of the 5' and 3' domains of yeast U6, our results help define the minimal set of requirements for yeast U6 RNA function in splicing. We present a revised secondary structural model of yeast U6 snRNA in free U6 snRNPs.

Full Text

The Full Text of this article is available as a PDF (498.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achsel T., Brahms H., Kastner B., Bachi A., Wilm M., Lührmann R. A doughnut-shaped heteromer of human Sm-like proteins binds to the 3'-end of U6 snRNA, thereby facilitating U4/U6 duplex formation in vitro. EMBO J. 1999 Oct 15;18(20):5789–5802. doi: 10.1093/emboj/18.20.5789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arenas J. E., Abelson J. N. Prp43: An RNA helicase-like factor involved in spliceosome disassembly. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11798–11802. doi: 10.1073/pnas.94.22.11798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boeke J. D., Trueheart J., Natsoulis G., Fink G. R. 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 1987;154:164–175. doi: 10.1016/0076-6879(87)54076-9. [DOI] [PubMed] [Google Scholar]
  4. Bordonné R., Guthrie C. Human and human-yeast chimeric U6 snRNA genes identify structural elements required for expression in yeast. Nucleic Acids Res. 1992 Feb 11;20(3):479–485. doi: 10.1093/nar/20.3.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bouveret E., Rigaut G., Shevchenko A., Wilm M., Séraphin B. A Sm-like protein complex that participates in mRNA degradation. EMBO J. 2000 Apr 3;19(7):1661–1671. doi: 10.1093/emboj/19.7.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brow D. A., Guthrie C. Spliceosomal RNA U6 is remarkably conserved from yeast to mammals. Nature. 1988 Jul 21;334(6179):213–218. doi: 10.1038/334213a0. [DOI] [PubMed] [Google Scholar]
  7. Brow D. A., Vidaver R. M. An element in human U6 RNA destabilizes the U4/U6 spliceosomal RNA complex. RNA. 1995 Apr;1(2):122–131. [PMC free article] [PubMed] [Google Scholar]
  8. Christianson T. W., Sikorski R. S., Dante M., Shero J. H., Hieter P. Multifunctional yeast high-copy-number shuttle vectors. Gene. 1992 Jan 2;110(1):119–122. doi: 10.1016/0378-1119(92)90454-w. [DOI] [PubMed] [Google Scholar]
  9. Collins B. M., Harrop S. J., Kornfeld G. D., Dawes I. W., Curmi P. M., Mabbutt B. C. Crystal structure of a heptameric Sm-like protein complex from archaea: implications for the structure and evolution of snRNPs. J Mol Biol. 2001 Jun 15;309(4):915–923. doi: 10.1006/jmbi.2001.4693. [DOI] [PubMed] [Google Scholar]
  10. Datta B., Weiner A. M. Genetic evidence for base pairing between U2 and U6 snRNA in mammalian mRNA splicing. Nature. 1991 Aug 29;352(6338):821–824. doi: 10.1038/352821a0. [DOI] [PubMed] [Google Scholar]
  11. Fabrizio P., Abelson J. Thiophosphates in yeast U6 snRNA specifically affect pre-mRNA splicing in vitro. Nucleic Acids Res. 1992 Jul 25;20(14):3659–3664. doi: 10.1093/nar/20.14.3659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fabrizio P., Abelson J. Two domains of yeast U6 small nuclear RNA required for both steps of nuclear precursor messenger RNA splicing. Science. 1990 Oct 19;250(4979):404–409. doi: 10.1126/science.2145630. [DOI] [PubMed] [Google Scholar]
  13. Fabrizio P., McPheeters D. S., Abelson J. In vitro assembly of yeast U6 snRNP: a functional assay. Genes Dev. 1989 Dec;3(12B):2137–2150. doi: 10.1101/gad.3.12b.2137. [DOI] [PubMed] [Google Scholar]
  14. Fetzer S., Lauber J., Will C. L., Lührmann R. The [U4/U6.U5] tri-snRNP-specific 27K protein is a novel SR protein that can be phosphorylated by the snRNP-associated protein kinase. RNA. 1997 Apr;3(4):344–355. [PMC free article] [PubMed] [Google Scholar]
  15. Field D. J., Friesen J. D. Functionally redundant interactions between U2 and U6 spliceosomal snRNAs. Genes Dev. 1996 Feb 15;10(4):489–501. doi: 10.1101/gad.10.4.489. [DOI] [PubMed] [Google Scholar]
  16. Fortner D. M., Troy R. G., Brow D. A. A stem/loop in U6 RNA defines a conformational switch required for pre-mRNA splicing. Genes Dev. 1994 Jan;8(2):221–233. doi: 10.1101/gad.8.2.221. [DOI] [PubMed] [Google Scholar]
  17. Fromont-Racine M., Mayes A. E., Brunet-Simon A., Rain J. C., Colley A., Dix I., Decourty L., Joly N., Ricard F., Beggs J. D. Genome-wide protein interaction screens reveal functional networks involving Sm-like proteins. Yeast. 2000 Jun 30;17(2):95–110. doi: 10.1002/1097-0061(20000630)17:2<95::AID-YEA16>3.0.CO;2-H. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ghetti A., Company M., Abelson J. Specificity of Prp24 binding to RNA: a role for Prp24 in the dynamic interaction of U4 and U6 snRNAs. RNA. 1995 Apr;1(2):132–145. [PMC free article] [PubMed] [Google Scholar]
  19. Gottschalk A., Neubauer G., Banroques J., Mann M., Lührmann R., Fabrizio P. Identification by mass spectrometry and functional analysis of novel proteins of the yeast [U4/U6.U5] tri-snRNP. EMBO J. 1999 Aug 16;18(16):4535–4548. doi: 10.1093/emboj/18.16.4535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  21. Hastings M. L., Krainer A. R. Pre-mRNA splicing in the new millennium. Curr Opin Cell Biol. 2001 Jun;13(3):302–309. doi: 10.1016/s0955-0674(00)00212-x. [DOI] [PubMed] [Google Scholar]
  22. Jandrositz A., Guthrie C. Evidence for a Prp24 binding site in U6 snRNA and in a putative intermediate in the annealing of U6 and U4 snRNAs. EMBO J. 1995 Feb 15;14(4):820–832. doi: 10.1002/j.1460-2075.1995.tb07060.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kambach C., Walke S., Young R., Avis J. M., de la Fortelle E., Raker V. A., Lührmann R., Li J., Nagai K. Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs. Cell. 1999 Feb 5;96(3):375–387. doi: 10.1016/s0092-8674(00)80550-4. [DOI] [PubMed] [Google Scholar]
  24. Kandels-Lewis S., Séraphin B. Involvement of U6 snRNA in 5' splice site selection. Science. 1993 Dec 24;262(5142):2035–2039. doi: 10.1126/science.8266100. [DOI] [PubMed] [Google Scholar]
  25. Kim C. H., Abelson J. Site-specific crosslinks of yeast U6 snRNA to the pre-mRNA near the 5' splice site. RNA. 1996 Oct;2(10):995–1010. [PMC free article] [PubMed] [Google Scholar]
  26. Lesser C. F., Guthrie C. Mutations in U6 snRNA that alter splice site specificity: implications for the active site. Science. 1993 Dec 24;262(5142):1982–1988. doi: 10.1126/science.8266093. [DOI] [PubMed] [Google Scholar]
  27. Li Z., Brow D. A. A rapid assay for quantitative detection of specific RNAs. Nucleic Acids Res. 1993 Sep 25;21(19):4645–4646. doi: 10.1093/nar/21.19.4645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lund E., Dahlberg J. E. Cyclic 2',3'-phosphates and nontemplated nucleotides at the 3' end of spliceosomal U6 small nuclear RNA's. Science. 1992 Jan 17;255(5042):327–330. doi: 10.1126/science.1549778. [DOI] [PubMed] [Google Scholar]
  29. Madhani H. D., Bordonné R., Guthrie C. Multiple roles for U6 snRNA in the splicing pathway. Genes Dev. 1990 Dec;4(12B):2264–2277. doi: 10.1101/gad.4.12b.2264. [DOI] [PubMed] [Google Scholar]
  30. Madhani H. D., Guthrie C. A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Cell. 1992 Nov 27;71(5):803–817. doi: 10.1016/0092-8674(92)90556-r. [DOI] [PubMed] [Google Scholar]
  31. Madhani H. D., Guthrie C. Randomization-selection analysis of snRNAs in vivo: evidence for a tertiary interaction in the spliceosome. Genes Dev. 1994 May 1;8(9):1071–1086. doi: 10.1101/gad.8.9.1071. [DOI] [PubMed] [Google Scholar]
  32. Mayes A. E., Verdone L., Legrain P., Beggs J. D. Characterization of Sm-like proteins in yeast and their association with U6 snRNA. EMBO J. 1999 Aug 2;18(15):4321–4331. doi: 10.1093/emboj/18.15.4321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. McPheeters D. S., Abelson J. Mutational analysis of the yeast U2 snRNA suggests a structural similarity to the catalytic core of group I introns. Cell. 1992 Nov 27;71(5):819–831. doi: 10.1016/0092-8674(92)90557-s. [DOI] [PubMed] [Google Scholar]
  34. McPheeters D. S. Interactions of the yeast U6 RNA with the pre-mRNA branch site. RNA. 1996 Nov;2(11):1110–1123. [PMC free article] [PubMed] [Google Scholar]
  35. Mura C., Cascio D., Sawaya M. R., Eisenberg D. S. The crystal structure of a heptameric archaeal Sm protein: Implications for the eukaryotic snRNP core. Proc Natl Acad Sci U S A. 2001 May 1;98(10):5532–5537. doi: 10.1073/pnas.091102298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pannone B. K., Kim S. D., Noe D. A., Wolin S. L. Multiple functional interactions between components of the Lsm2-Lsm8 complex, U6 snRNA, and the yeast La protein. Genetics. 2001 May;158(1):187–196. doi: 10.1093/genetics/158.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Raghunathan P. L., Guthrie C. A spliceosomal recycling factor that reanneals U4 and U6 small nuclear ribonucleoprotein particles. Science. 1998 Feb 6;279(5352):857–860. doi: 10.1126/science.279.5352.857. [DOI] [PubMed] [Google Scholar]
  38. Raghunathan P. L., Guthrie C. RNA unwinding in U4/U6 snRNPs requires ATP hydrolysis and the DEIH-box splicing factor Brr2. Curr Biol. 1998 Jul 16;8(15):847–855. doi: 10.1016/s0960-9822(07)00345-4. [DOI] [PubMed] [Google Scholar]
  39. Ryan Daniel E., Abelson John. The conserved central domain of yeast U6 snRNA: importance of U2-U6 helix Ia in spliceosome assembly. RNA. 2002 Aug;8(8):997–1010. doi: 10.1017/s1355838202025013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Schwer B., Gross C. H. Prp22, a DExH-box RNA helicase, plays two distinct roles in yeast pre-mRNA splicing. EMBO J. 1998 Apr 1;17(7):2086–2094. doi: 10.1093/emboj/17.7.2086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Shannon K. W., Guthrie C. Suppressors of a U4 snRNA mutation define a novel U6 snRNP protein with RNA-binding motifs. Genes Dev. 1991 May;5(5):773–785. doi: 10.1101/gad.5.5.773. [DOI] [PubMed] [Google Scholar]
  42. Sontheimer E. J., Steitz J. A. The U5 and U6 small nuclear RNAs as active site components of the spliceosome. Science. 1993 Dec 24;262(5142):1989–1996. doi: 10.1126/science.8266094. [DOI] [PubMed] [Google Scholar]
  43. Stevens S. W., Abelson J. Purification of the yeast U4/U6.U5 small nuclear ribonucleoprotein particle and identification of its proteins. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7226–7231. doi: 10.1073/pnas.96.13.7226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Stevens S. W. Analysis of low-abundance ribonucleoprotein particles from yeast by affinity chromatography and mass spectrometry microsequencing. Methods Enzymol. 2000;318:385–398. doi: 10.1016/s0076-6879(00)18065-6. [DOI] [PubMed] [Google Scholar]
  45. Stevens S. W., Barta I., Ge H. Y., Moore R. E., Young M. K., Lee T. D., Abelson J. Biochemical and genetic analyses of the U5, U6, and U4/U6 x U5 small nuclear ribonucleoproteins from Saccharomyces cerevisiae. RNA. 2001 Nov;7(11):1543–1553. [PMC free article] [PubMed] [Google Scholar]
  46. Stevens Scott W., Ryan Daniel E., Ge Helen Y., Moore Roger E., Young Mary K., Lee Terry D., Abelson John. Composition and functional characterization of the yeast spliceosomal penta-snRNP. Mol Cell. 2002 Jan;9(1):31–44. doi: 10.1016/s1097-2765(02)00436-7. [DOI] [PubMed] [Google Scholar]
  47. Tharun S., He W., Mayes A. E., Lennertz P., Beggs J. D., Parker R. Yeast Sm-like proteins function in mRNA decapping and decay. Nature. 2000 Mar 30;404(6777):515–518. doi: 10.1038/35006676. [DOI] [PubMed] [Google Scholar]
  48. Törö I., Thore S., Mayer C., Basquin J., Séraphin B., Suck D. RNA binding in an Sm core domain: X-ray structure and functional analysis of an archaeal Sm protein complex. EMBO J. 2001 May 1;20(9):2293–2303. doi: 10.1093/emboj/20.9.2293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Vaidya V. C., Seshadri V., Vijayraghavan U. An extragenic suppressor of prp24-1 defines genetic interaction between PRP24 and PRP21 gene products of Saccharomyces cerevisiae. Mol Gen Genet. 1996 Feb 25;250(3):267–276. doi: 10.1007/BF02174384. [DOI] [PubMed] [Google Scholar]
  50. Valadkhan S., Manley J. L. Splicing-related catalysis by protein-free snRNAs. Nature. 2001 Oct 18;413(6857):701–707. doi: 10.1038/35099500. [DOI] [PubMed] [Google Scholar]
  51. Vidal V. P., Verdone L., Mayes A. E., Beggs J. D. Characterization of U6 snRNA-protein interactions. RNA. 1999 Nov;5(11):1470–1481. doi: 10.1017/s1355838299991355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Vidaver R. M., Fortner D. M., Loos-Austin L. S., Brow D. A. Multiple functions of Saccharomyces cerevisiae splicing protein Prp24 in U6 RNA structural rearrangements. Genetics. 1999 Nov;153(3):1205–1218. doi: 10.1093/genetics/153.3.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Vijayraghavan U., Company M., Abelson J. Isolation and characterization of pre-mRNA splicing mutants of Saccharomyces cerevisiae. Genes Dev. 1989 Aug;3(8):1206–1216. doi: 10.1101/gad.3.8.1206. [DOI] [PubMed] [Google Scholar]
  54. Wagner J. D., Jankowsky E., Company M., Pyle A. M., Abelson J. N. The DEAH-box protein PRP22 is an ATPase that mediates ATP-dependent mRNA release from the spliceosome and unwinds RNA duplexes. EMBO J. 1998 May 15;17(10):2926–2937. doi: 10.1093/emboj/17.10.2926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Wassarman D. A., Steitz J. A. Interactions of small nuclear RNA's with precursor messenger RNA during in vitro splicing. Science. 1992 Sep 25;257(5078):1918–1925. doi: 10.1126/science.1411506. [DOI] [PubMed] [Google Scholar]
  56. Wolff T., Bindereif A. Conformational changes of U6 RNA during the spliceosome cycle: an intramolecular helix is essential both for initiating the U4-U6 interaction and for the first step of slicing. Genes Dev. 1993 Jul;7(7B):1377–1389. doi: 10.1101/gad.7.7b.1377. [DOI] [PubMed] [Google Scholar]
  57. Wolff T., Bindereif A. Mutational analysis of human U6 RNA: stabilizing the intramolecular helix blocks the spliceosomal assembly pathway. Biochim Biophys Acta. 1995 Jul 25;1263(1):39–44. doi: 10.1016/0167-4781(95)00085-u. [DOI] [PubMed] [Google Scholar]
  58. Wolff T., Bindereif A. Reconstituted mammalian U4/U6 snRNP complements splicing: a mutational analysis. EMBO J. 1992 Jan;11(1):345–359. doi: 10.1002/j.1460-2075.1992.tb05057.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Wu J. A., Manley J. L. Base pairing between U2 and U6 snRNAs is necessary for splicing of a mammalian pre-mRNA. Nature. 1991 Aug 29;352(6338):818–821. doi: 10.1038/352818a0. [DOI] [PubMed] [Google Scholar]
  60. Xu D., Friesen J. D. Splicing factor slt11p and its involvement in formation of U2/U6 helix II in activation of the yeast spliceosome. Mol Cell Biol. 2001 Feb;21(4):1011–1023. doi: 10.1128/MCB.21.4.1011-1023.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Yean S. L., Wuenschell G., Termini J., Lin R. J. Metal-ion coordination by U6 small nuclear RNA contributes to catalysis in the spliceosome. Nature. 2000 Dec 14;408(6814):881–884. doi: 10.1038/35048617. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES