Skip to main content
RNA logoLink to RNA
. 2002 Nov;8(11):1363–1372. doi: 10.1017/s1355838202021180

Aminoacyl-tRNA synthetases: versatile players in the changing theater of translation.

Christopher Francklyn 1, John J Perona 1, Joern Puetz 1, Ya-Ming Hou 1
PMCID: PMC1370343  PMID: 12458790

Abstract

Aminoacyl-tRNA synthetases attach amino acids to the 3' termini of cognate tRNAs to establish the specificity of protein synthesis. A recent Asilomar conference (California, January 13-18, 2002) discussed new research into the structure-function relationship of these crucial enzymes, as well as a multitude of novel functions, including participation in amino acid biosynthesis, cell cycle control, RNA splicing, and export of tRNAs from nucleus to cytoplasm in eukaryotic cells. Together with the discovery of their role in the cellular synthesis of proteins to incorporate selenocysteine and pyrrolysine, these diverse functions of aminoacyl-tRNA synthetases underscore the flexibility and adaptability of these ancient enzymes and stimulate the development of new concepts and methods for expanding the genetic code.

Full Text

The Full Text of this article is available as a PDF (778.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambrogelly Alexandre, Korencic Dragana, Ibba Michael. Functional annotation of class I lysyl-tRNA synthetase phylogeny indicates a limited role for gene transfer. J Bacteriol. 2002 Aug;184(16):4594–4600. doi: 10.1128/JB.184.16.4594-4600.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnez J. G., Moras D. Structural and functional considerations of the aminoacylation reaction. Trends Biochem Sci. 1997 Jun;22(6):211–216. doi: 10.1016/s0968-0004(97)01052-9. [DOI] [PubMed] [Google Scholar]
  3. Bessho Yoshitaka, Hodgson David R. W., Suga Hiroaki. A tRNA aminoacylation system for non-natural amino acids based on a programmable ribozyme. Nat Biotechnol. 2002 Jul;20(7):723–728. doi: 10.1038/nbt0702-723. [DOI] [PubMed] [Google Scholar]
  4. Beuning P. J., Musier-Forsyth K. Hydrolytic editing by a class II aminoacyl-tRNA synthetase. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8916–8920. doi: 10.1073/pnas.97.16.8916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bond J. P., Francklyn C. Proteobacterial histidine-biosynthetic pathways are paraphyletic. J Mol Evol. 2000 Apr;50(4):339–347. doi: 10.1007/s002399910037. [DOI] [PubMed] [Google Scholar]
  6. Bovee M. L., Yan W., Sproat B. S., Francklyn C. S. tRNA discrimination at the binding step by a class II aminoacyl-tRNA synthetase. Biochemistry. 1999 Oct 12;38(41):13725–13735. doi: 10.1021/bi991182g. [DOI] [PubMed] [Google Scholar]
  7. Bunjun S., Stathopoulos C., Graham D., Min B., Kitabatake M., Wang A. L., Wang C. C., Vivarès C. P., Weiss L. M., Söll D. A dual-specificity aminoacyl-tRNA synthetase in the deep-rooted eukaryote Giardia lamblia. Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):12997–13002. doi: 10.1073/pnas.230444397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. CRICK F. H. On protein synthesis. Symp Soc Exp Biol. 1958;12:138–163. [PubMed] [Google Scholar]
  9. Carrodeguas J. A., Theis K., Bogenhagen D. F., Kisker C. Crystal structure and deletion analysis show that the accessory subunit of mammalian DNA polymerase gamma, Pol gamma B, functions as a homodimer. Mol Cell. 2001 Jan;7(1):43–54. doi: 10.1016/s1097-2765(01)00153-8. [DOI] [PubMed] [Google Scholar]
  10. Cavarelli J., Delagoutte B., Eriani G., Gangloff J., Moras D. L-arginine recognition by yeast arginyl-tRNA synthetase. EMBO J. 1998 Sep 15;17(18):5438–5448. doi: 10.1093/emboj/17.18.5438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Commans S., Böck A. Selenocysteine inserting tRNAs: an overview. FEMS Microbiol Rev. 1999 Jun;23(3):335–351. doi: 10.1111/j.1574-6976.1999.tb00403.x. [DOI] [PubMed] [Google Scholar]
  12. Curnow A. W., Tumbula D. L., Pelaschier J. T., Min B., Söll D. Glutamyl-tRNA(Gln) amidotransferase in Deinococcus radiodurans may be confined to asparagine biosynthesis. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):12838–12843. doi: 10.1073/pnas.95.22.12838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cusack S., Yaremchuk A., Tukalo M. The 2 A crystal structure of leucyl-tRNA synthetase and its complex with a leucyl-adenylate analogue. EMBO J. 2000 May 15;19(10):2351–2361. doi: 10.1093/emboj/19.10.2351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cusack S., Yaremchuk A., Tukalo M. The crystal structure of the ternary complex of T.thermophilus seryl-tRNA synthetase with tRNA(Ser) and a seryl-adenylate analogue reveals a conformational switch in the active site. EMBO J. 1996 Jun 3;15(11):2834–2842. [PMC free article] [PubMed] [Google Scholar]
  15. Dock-Bregeon A., Sankaranarayanan R., Romby P., Caillet J., Springer M., Rees B., Francklyn C. S., Ehresmann C., Moras D. Transfer RNA-mediated editing in threonyl-tRNA synthetase. The class II solution to the double discrimination problem. Cell. 2000 Dec 8;103(6):877–884. doi: 10.1016/s0092-8674(00)00191-4. [DOI] [PubMed] [Google Scholar]
  16. Dong J., Qiu H., Garcia-Barrio M., Anderson J., Hinnebusch A. G. Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol Cell. 2000 Aug;6(2):269–279. doi: 10.1016/s1097-2765(00)00028-9. [DOI] [PubMed] [Google Scholar]
  17. Döring V., Mootz H. D., Nangle L. A., Hendrickson T. L., de Crécy-Lagard V., Schimmel P., Marlière P. Enlarging the amino acid set of Escherichia coli by infiltration of the valine coding pathway. Science. 2001 Apr 20;292(5516):501–504. doi: 10.1126/science.1057718. [DOI] [PubMed] [Google Scholar]
  18. Eriani G., Gangloff J. Yeast aspartyl-tRNA synthetase residues interacting with tRNA(Asp) identity bases connectively contribute to tRNA(Asp) binding in the ground and transition-state complex and discriminate against non-cognate tRNAs. J Mol Biol. 1999 Aug 27;291(4):761–773. doi: 10.1006/jmbi.1999.3012. [DOI] [PubMed] [Google Scholar]
  19. Fersht A. R., Shi J. P., Knill-Jones J., Lowe D. M., Wilkinson A. J., Blow D. M., Brick P., Carter P., Waye M. M., Winter G. Hydrogen bonding and biological specificity analysed by protein engineering. Nature. 1985 Mar 21;314(6008):235–238. doi: 10.1038/314235a0. [DOI] [PubMed] [Google Scholar]
  20. Galagan James E., Nusbaum Chad, Roy Alice, Endrizzi Matthew G., Macdonald Pendexter, FitzHugh Will, Calvo Sarah, Engels Reinhard, Smirnov Serge, Atnoor Deven. The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res. 2002 Apr;12(4):532–542. doi: 10.1101/gr.223902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Galani K., Grosshans H., Deinert K., Hurt E. C., Simos G. The intracellular location of two aminoacyl-tRNA synthetases depends on complex formation with Arc1p. EMBO J. 2001 Dec 3;20(23):6889–6898. doi: 10.1093/emboj/20.23.6889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hao Bing, Gong Weimin, Ferguson Tsuneo K., James Carey M., Krzycki Joseph A., Chan Michael K. A new UAG-encoded residue in the structure of a methanogen methyltransferase. Science. 2002 May 24;296(5572):1462–1466. doi: 10.1126/science.1069556. [DOI] [PubMed] [Google Scholar]
  23. Hatfield Dolph L., Gladyshev Vadim N. How selenium has altered our understanding of the genetic code. Mol Cell Biol. 2002 Jun;22(11):3565–3576. doi: 10.1128/MCB.22.11.3565-3576.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ibba M., Becker H. D., Stathopoulos C., Tumbula D. L., Söll D. The adaptor hypothesis revisited. Trends Biochem Sci. 2000 Jul;25(7):311–316. doi: 10.1016/s0968-0004(00)01600-5. [DOI] [PubMed] [Google Scholar]
  25. Ibba M., Bono J. L., Rosa P. A., Söll D. Archaeal-type lysyl-tRNA synthetase in the Lyme disease spirochete Borrelia burgdorferi. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14383–14388. doi: 10.1073/pnas.94.26.14383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ibba M., Kast P., Hennecke H. Substrate specificity is determined by amino acid binding pocket size in Escherichia coli phenylalanyl-tRNA synthetase. Biochemistry. 1994 Jun 14;33(23):7107–7112. doi: 10.1021/bi00189a013. [DOI] [PubMed] [Google Scholar]
  27. Ibba M., Losey H. C., Kawarabayasi Y., Kikuchi H., Bunjun S., Söll D. Substrate recognition by class I lysyl-tRNA synthetases: a molecular basis for gene displacement. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):418–423. doi: 10.1073/pnas.96.2.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ibba M., Sever S., Praetorius-Ibba M., Söll D. Transfer RNA identity contributes to transition state stabilization during aminoacyl-tRNA synthesis. Nucleic Acids Res. 1999 Sep 15;27(18):3631–3637. doi: 10.1093/nar/27.18.3631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ibba M., Soll D. Aminoacyl-tRNA synthesis. Annu Rev Biochem. 2000;69:617–650. doi: 10.1146/annurev.biochem.69.1.617. [DOI] [PubMed] [Google Scholar]
  30. Jackson D. Y., Burnier J., Quan C., Stanley M., Tom J., Wells J. A. A designed peptide ligase for total synthesis of ribonuclease A with unnatural catalytic residues. Science. 1994 Oct 14;266(5183):243–247. doi: 10.1126/science.7939659. [DOI] [PubMed] [Google Scholar]
  31. James C. M., Ferguson T. K., Leykam J. F., Krzycki J. A. The amber codon in the gene encoding the monomethylamine methyltransferase isolated from Methanosarcina barkeri is translated as a sense codon. J Biol Chem. 2001 Jul 2;276(36):34252–34258. doi: 10.1074/jbc.M102929200. [DOI] [PubMed] [Google Scholar]
  32. Javanbakht Hassan, Cen Shan, Musier-Forsyth Karin, Kleiman Lawrence. Correlation between tRNALys3 aminoacylation and its incorporation into HIV-1. J Biol Chem. 2002 Mar 7;277(20):17389–17396. doi: 10.1074/jbc.M112479200. [DOI] [PubMed] [Google Scholar]
  33. Kaminska M., Deniziak M., Kerjan P., Barciszewski J., Mirande M. A recurrent general RNA binding domain appended to plant methionyl-tRNA synthetase acts as a cis-acting cofactor for aminoacylation. EMBO J. 2000 Dec 15;19(24):6908–6917. doi: 10.1093/emboj/19.24.6908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kim Jin Young, Kang Young-Sun, Lee Joong-Won, Kim Hyoung June, Ahn Young Ha, Park Heonyong, Ko Young-Gyu, Kim Sunghoon. p38 is essential for the assembly and stability of macromolecular tRNA synthetase complex: implications for its physiological significance. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):7912–7916. doi: 10.1073/pnas.122110199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kirshenbaum Kent, Carrico Isaac S., Tirrell David A. Biosynthesis of proteins incorporating a versatile set of phenylalanine analogues. Chembiochem. 2002 Mar 1;3(2-3):235–237. doi: 10.1002/1439-7633(20020301)3:2/3<235::AID-CBIC235>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  36. Kleeman T. A., Wei D., Simpson K. L., First E. A. Human tyrosyl-tRNA synthetase shares amino acid sequence homology with a putative cytokine. J Biol Chem. 1997 May 30;272(22):14420–14425. doi: 10.1074/jbc.272.22.14420. [DOI] [PubMed] [Google Scholar]
  37. Kowal A. K., Kohrer C., RajBhandary U. L. Twenty-first aminoacyl-tRNA synthetase-suppressor tRNA pairs for possible use in site-specific incorporation of amino acid analogues into proteins in eukaryotes and in eubacteria. Proc Natl Acad Sci U S A. 2001 Jan 23;98(5):2268–2273. doi: 10.1073/pnas.031488298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. LaRiviere F. J., Wolfson A. D., Uhlenbeck O. C. Uniform binding of aminoacyl-tRNAs to elongation factor Tu by thermodynamic compensation. Science. 2001 Oct 5;294(5540):165–168. doi: 10.1126/science.1064242. [DOI] [PubMed] [Google Scholar]
  39. Lin L., Hale S. P., Schimmel P. Aminoacylation error correction. Nature. 1996 Nov 7;384(6604):33–34. doi: 10.1038/384033b0. [DOI] [PubMed] [Google Scholar]
  40. Lipman R. S., Sowers K. R., Hou Y. M. Synthesis of cysteinyl-tRNA(Cys) by a genome that lacks the normal cysteine-tRNA synthetase. Biochemistry. 2000 Jul 4;39(26):7792–7798. doi: 10.1021/bi0004955. [DOI] [PubMed] [Google Scholar]
  41. Lipman Richard S. A., Beuning Penny J., Musier-Forsyth Karin, Hou Ya-Ming. Amino acid activation of a dual-specificity tRNA synthetase is independent of tRNA. J Mol Biol. 2002 Feb 22;316(3):421–427. doi: 10.1006/jmbi.2001.5373. [DOI] [PubMed] [Google Scholar]
  42. Liu D. R., Magliery T. J., Pastrnak M., Schultz P. G. Engineering a tRNA and aminoacyl-tRNA synthetase for the site-specific incorporation of unnatural amino acids into proteins in vivo. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10092–10097. doi: 10.1073/pnas.94.19.10092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Lund E., Dahlberg J. E. Proofreading and aminoacylation of tRNAs before export from the nucleus. Science. 1998 Dec 11;282(5396):2082–2085. doi: 10.1126/science.282.5396.2082. [DOI] [PubMed] [Google Scholar]
  44. Moulinier L., Eiler S., Eriani G., Gangloff J., Thierry J. C., Gabriel K., McClain W. H., Moras D. The structure of an AspRS-tRNA(Asp) complex reveals a tRNA-dependent control mechanism. EMBO J. 2001 Sep 17;20(18):5290–5301. doi: 10.1093/emboj/20.18.5290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Mursinna R. S., Lincecum T. L., Jr, Martinis S. A. A conserved threonine within Escherichia coli leucyl-tRNA synthetase prevents hydrolytic editing of leucyl-tRNALeu. Biochemistry. 2001 May 8;40(18):5376–5381. doi: 10.1021/bi002915w. [DOI] [PubMed] [Google Scholar]
  46. Myers Christopher A., Kuhla Birte, Cusack Stephen, Lambowitz Alan M. tRNA-like recognition of group I introns by a tyrosyl-tRNA synthetase. Proc Natl Acad Sci U S A. 2002 Feb 19;99(5):2630–2635. doi: 10.1073/pnas.052596299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Nakatsu T., Kato H., Oda J. Crystal structure of asparagine synthetase reveals a close evolutionary relationship to class II aminoacyl-tRNA synthetase. Nat Struct Biol. 1998 Jan;5(1):15–19. doi: 10.1038/nsb0198-15. [DOI] [PubMed] [Google Scholar]
  48. Nathanson L., Deutscher M. P. Active aminoacyl-tRNA synthetases are present in nuclei as a high molecular weight multienzyme complex. J Biol Chem. 2000 Oct 13;275(41):31559–31562. doi: 10.1074/jbc.C000385200. [DOI] [PubMed] [Google Scholar]
  49. Newberry Kate J., Hou Ya-Ming, Perona John J. Structural origins of amino acid selection without editing by cysteinyl-tRNA synthetase. EMBO J. 2002 Jun 3;21(11):2778–2787. doi: 10.1093/emboj/21.11.2778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Nomanbhoy T. K., Hendrickson T. L., Schimmel P. Transfer RNA-dependent translocation of misactivated amino acids to prevent errors in protein synthesis. Mol Cell. 1999 Oct;4(4):519–528. doi: 10.1016/s1097-2765(00)80203-8. [DOI] [PubMed] [Google Scholar]
  51. Norcum Mona T., Boisset Nicolas. Three-dimensional architecture of the eukaryotic multisynthetase complex determined from negatively stained and cryoelectron micrographs. FEBS Lett. 2002 Feb 13;512(1-3):298–302. doi: 10.1016/s0014-5793(02)02262-7. [DOI] [PubMed] [Google Scholar]
  52. Nordin Brian E., Schimmel Paul. Plasticity of recognition of the 3'-end of mischarged tRNA by class I aminoacyl-tRNA synthetases. J Biol Chem. 2002 Mar 28;277(23):20510–20517. doi: 10.1074/jbc.M202023200. [DOI] [PubMed] [Google Scholar]
  53. Noren C. J., Anthony-Cahill S. J., Griffith M. C., Schultz P. G. A general method for site-specific incorporation of unnatural amino acids into proteins. Science. 1989 Apr 14;244(4901):182–188. doi: 10.1126/science.2649980. [DOI] [PubMed] [Google Scholar]
  54. Nowak M. W., Kearney P. C., Sampson J. R., Saks M. E., Labarca C. G., Silverman S. K., Zhong W., Thorson J., Abelson J. N., Davidson N. Nicotinic receptor binding site probed with unnatural amino acid incorporation in intact cells. Science. 1995 Apr 21;268(5209):439–442. doi: 10.1126/science.7716551. [DOI] [PubMed] [Google Scholar]
  55. Nureki O., Vassylyev D. G., Tateno M., Shimada A., Nakama T., Fukai S., Konno M., Hendrickson T. L., Schimmel P., Yokoyama S. Enzyme structure with two catalytic sites for double-sieve selection of substrate. Science. 1998 Apr 24;280(5363):578–582. doi: 10.1126/science.280.5363.578. [DOI] [PubMed] [Google Scholar]
  56. Onesti S., Desogus G., Brevet A., Chen J., Plateau P., Blanquet S., Brick P. Structural studies of lysyl-tRNA synthetase: conformational changes induced by substrate binding. Biochemistry. 2000 Oct 24;39(42):12853–12861. doi: 10.1021/bi001487r. [DOI] [PubMed] [Google Scholar]
  57. Otani Atsushi, Slike Bonnie M., Dorrell Michael I., Hood John, Kinder Karen, Ewalt Karla L., Cheresh David, Schimmel Paul, Friedlander Martin. A fragment of human TrpRS as a potent antagonist of ocular angiogenesis. Proc Natl Acad Sci U S A. 2002 Jan 2;99(1):178–183. doi: 10.1073/pnas.012601899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Popenko V. I., Ivanova J. L., Cherny N. E., Filonenko V. V., Beresten S. F., Wolfson A. D., Kisselev L. L. Compartmentalization of certain components of the protein synthesis apparatus in mammalian cells. Eur J Cell Biol. 1994 Oct;65(1):60–69. [PubMed] [Google Scholar]
  59. Qiu X., Janson C. A., Blackburn M. N., Chhohan I. K., Hibbs M., Abdel-Meguid S. S. Cooperative structural dynamics and a novel fidelity mechanism in histidyl-tRNA synthetases. Biochemistry. 1999 Sep 21;38(38):12296–12304. doi: 10.1021/bi990482v. [DOI] [PubMed] [Google Scholar]
  60. Quevillon S., Mirande M. The p18 component of the multisynthetase complex shares a protein motif with the beta and gamma subunits of eukaryotic elongation factor 1. FEBS Lett. 1996 Oct 14;395(1):63–67. doi: 10.1016/0014-5793(96)01005-8. [DOI] [PubMed] [Google Scholar]
  61. Quevillon S., Robinson J. C., Berthonneau E., Siatecka M., Mirande M. Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein-protein interactions and characterization of a core protein. J Mol Biol. 1999 Jan 8;285(1):183–195. doi: 10.1006/jmbi.1998.2316. [DOI] [PubMed] [Google Scholar]
  62. Rabilloud Thierry, Strub Jean-Marc, Carte Nathalie, Luche Sylvie, Van Dorsselaer Alain, Lunardi Joël, Giegé Richard, Florentz Catherine. Comparative proteomics as a new tool for exploring human mitochondrial tRNA disorders. Biochemistry. 2002 Jan 8;41(1):144–150. doi: 10.1021/bi0114776. [DOI] [PubMed] [Google Scholar]
  63. Rho S. B., Martinis S. A. The bI4 group I intron binds directly to both its protein splicing partners, a tRNA synthetase and maturase, to facilitate RNA splicing activity. RNA. 2000 Dec;6(12):1882–1894. doi: 10.1017/s1355838200001254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Ribas de Pouplana L., Schimmel P. Aminoacyl-tRNA synthetases: potential markers of genetic code development. Trends Biochem Sci. 2001 Oct;26(10):591–596. doi: 10.1016/s0968-0004(01)01932-6. [DOI] [PubMed] [Google Scholar]
  65. Sankaranarayanan R., Dock-Bregeon A. C., Romby P., Caillet J., Springer M., Rees B., Ehresmann C., Ehresmann B., Moras D. The structure of threonyl-tRNA synthetase-tRNA(Thr) complex enlightens its repressor activity and reveals an essential zinc ion in the active site. Cell. 1999 Apr 30;97(3):371–381. doi: 10.1016/s0092-8674(00)80746-1. [DOI] [PubMed] [Google Scholar]
  66. Sekine S., Nureki O., Shimada A., Vassylyev D. G., Yokoyama S. Structural basis for anticodon recognition by discriminating glutamyl-tRNA synthetase. Nat Struct Biol. 2001 Mar;8(3):203–206. doi: 10.1038/84927. [DOI] [PubMed] [Google Scholar]
  67. Shalak V., Kaminska M., Mitnacht-Kraus R., Vandenabeele P., Clauss M., Mirande M. The EMAPII cytokine is released from the mammalian multisynthetase complex after cleavage of its p43/proEMAPII component. J Biol Chem. 2001 Apr 16;276(26):23769–23776. doi: 10.1074/jbc.M100489200. [DOI] [PubMed] [Google Scholar]
  68. Silvian L. F., Wang J., Steitz T. A. Insights into editing from an ile-tRNA synthetase structure with tRNAile and mupirocin. Science. 1999 Aug 13;285(5430):1074–1077. [PubMed] [Google Scholar]
  69. Simos G., Segref A., Fasiolo F., Hellmuth K., Shevchenko A., Mann M., Hurt E. C. The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl- and glutamyl-tRNA synthetases. EMBO J. 1996 Oct 1;15(19):5437–5448. [PMC free article] [PubMed] [Google Scholar]
  70. Sissler M., Delorme C., Bond J., Ehrlich S. D., Renault P., Francklyn C. An aminoacyl-tRNA synthetase paralog with a catalytic role in histidine biosynthesis. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):8985–8990. doi: 10.1073/pnas.96.16.8985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Srinivasan Gayathri, James Carey M., Krzycki Joseph A. Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA. Science. 2002 May 24;296(5572):1459–1462. doi: 10.1126/science.1069588. [DOI] [PubMed] [Google Scholar]
  72. Stapulionis R., Deutscher M. P. A channeled tRNA cycle during mammalian protein synthesis. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7158–7161. doi: 10.1073/pnas.92.16.7158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Stathopoulos C., Jacquin-Becker C., Becker H. D., Li T., Ambrogelly A., Longman R., Söll D. Methanococcus jannaschii prolyl-cysteinyl-tRNA synthetase possesses overlapping amino acid binding sites. Biochemistry. 2001 Jan 9;40(1):46–52. doi: 10.1021/bi002108x. [DOI] [PubMed] [Google Scholar]
  74. Stathopoulos C., Li T., Longman R., Vothknecht U. C., Becker H. D., Ibba M., Söll D. One polypeptide with two aminoacyl-tRNA synthetase activities. Science. 2000 Jan 21;287(5452):479–482. doi: 10.1126/science.287.5452.479. [DOI] [PubMed] [Google Scholar]
  75. Stehlin C., Burke B., Yang F., Liu H., Shiba K., Musier-Forsyth K. Species-specific differences in the operational RNA code for aminoacylation of tRNAPro. Biochemistry. 1998 Jun 9;37(23):8605–8613. doi: 10.1021/bi980364s. [DOI] [PubMed] [Google Scholar]
  76. Terada Takaho, Nureki Osamu, Ishitani Ryuichiro, Ambrogelly Alexandre, Ibba Michael, Söll Dieter, Yokoyama Shigeyuki. Functional convergence of two lysyl-tRNA synthetases with unrelated topologies. Nat Struct Biol. 2002 Apr;9(4):257–262. doi: 10.1038/nsb777. [DOI] [PubMed] [Google Scholar]
  77. Wakasugi K., Schimmel P. Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science. 1999 Apr 2;284(5411):147–151. doi: 10.1126/science.284.5411.147. [DOI] [PubMed] [Google Scholar]
  78. Wang L., Brock A., Herberich B., Schultz P. G. Expanding the genetic code of Escherichia coli. Science. 2001 Apr 20;292(5516):498–500. doi: 10.1126/science.1060077. [DOI] [PubMed] [Google Scholar]
  79. Wilcox M., Nirenberg M. Transfer RNA as a cofactor coupling amino acid synthesis with that of protein. Proc Natl Acad Sci U S A. 1968 Sep;61(1):229–236. doi: 10.1073/pnas.61.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Wilson K. P., Shewchuk L. M., Brennan R. G., Otsuka A. J., Matthews B. W. Escherichia coli biotin holoenzyme synthetase/bio repressor crystal structure delineates the biotin- and DNA-binding domains. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9257–9261. doi: 10.1073/pnas.89.19.9257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Yang D. C. Mammalian aminoacyl-tRNA synthetases. Curr Top Cell Regul. 1996;34:101–136. doi: 10.1016/s0070-2137(96)80004-5. [DOI] [PubMed] [Google Scholar]
  82. Yaremchuk A., Tukalo M., Grøtli M., Cusack S. A succession of substrate induced conformational changes ensures the amino acid specificity of Thermus thermophilus prolyl-tRNA synthetase: comparison with histidyl-tRNA synthetase. J Mol Biol. 2001 Jun 15;309(4):989–1002. doi: 10.1006/jmbi.2001.4712. [DOI] [PubMed] [Google Scholar]
  83. Yaremchuk Anna, Kriklivyi Ivan, Tukalo Michael, Cusack Stephen. Class I tyrosyl-tRNA synthetase has a class II mode of cognate tRNA recognition. EMBO J. 2002 Jul 15;21(14):3829–3840. doi: 10.1093/emboj/cdf373. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES