Skip to main content
RNA logoLink to RNA
. 2002 Nov;8(11):1393–1400. doi: 10.1017/s1355838202021015

Inhibition of Klenow DNA polymerase and poly(A)-specific ribonuclease by aminoglycosides.

Yan-Guo Ren 1, Javier Martínez 1, Leif A Kirsebom 1, Anders Virtanen 1
PMCID: PMC1370346  PMID: 12458793

Abstract

Aminoglycosides are known to bind and perturb the function of catalytic RNA. Here we show that they also are potent inhibitors of protein-based catalysis using Escherichia coli Klenow polymerase (pol) and mammalian poly(A)-specific ribonuclease (PARN) as model enzymes. The inhibition was pH dependent and released in a competitive manner by Mg2+. Kinetic analysis showed that neomycin B behaved as a mixed noncompetitive inhibitor. Iron-mediated hydroxyl radical cleavage was used to show that neomycin B interfered with metal-ion binding in the active sites of both enzymes. Our analysis suggests a mechanism of inhibition where the aminoglycoside binds in the active site of the enzyme and thereby displaces catalytically important divalent metal ions. The potential causes of aminoglycoside toxicity and the usage of aminoglycosides to probe, characterize, and perturb metalloenzymes are discussed.

Full Text

The Full Text of this article is available as a PDF (419.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aström J., Aström A., Virtanen A. In vitro deadenylation of mammalian mRNA by a HeLa cell 3' exonuclease. EMBO J. 1991 Oct;10(10):3067–3071. doi: 10.1002/j.1460-2075.1991.tb07858.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aström J., Aström A., Virtanen A. Properties of a HeLa cell 3' exonuclease specific for degrading poly(A) tails of mammalian mRNA. J Biol Chem. 1992 Sep 5;267(25):18154–18159. [PubMed] [Google Scholar]
  3. Brautigam C. A., Steitz T. A. Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. Curr Opin Struct Biol. 1998 Feb;8(1):54–63. doi: 10.1016/s0959-440x(98)80010-9. [DOI] [PubMed] [Google Scholar]
  4. Brodersen D. E., Clemons W. M., Jr, Carter A. P., Morgan-Warren R. J., Wimberly B. T., Ramakrishnan V. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell. 2000 Dec 22;103(7):1143–1154. doi: 10.1016/s0092-8674(00)00216-6. [DOI] [PubMed] [Google Scholar]
  5. Carter A. P., Clemons W. M., Brodersen D. E., Morgan-Warren R. J., Wimberly B. T., Ramakrishnan V. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature. 2000 Sep 21;407(6802):340–348. doi: 10.1038/35030019. [DOI] [PubMed] [Google Scholar]
  6. Copeland P. R., Wormington M. The mechanism and regulation of deadenylation: identification and characterization of Xenopus PARN. RNA. 2001 Jun;7(6):875–886. doi: 10.1017/s1355838201010020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davies J. New pathogens and old resistance genes. Microbiologia. 1994 Mar-Jun;10(1-2):9–12. [PubMed] [Google Scholar]
  8. Davies J., Wright G. D. Bacterial resistance to aminoglycoside antibiotics. Trends Microbiol. 1997 Jun;5(6):234–240. doi: 10.1016/S0966-842X(97)01033-0. [DOI] [PubMed] [Google Scholar]
  9. Earnshaw D. J., Gait M. J. Hairpin ribozyme cleavage catalyzed by aminoglycoside antibiotics and the polyamine spermine in the absence of metal ions. Nucleic Acids Res. 1998 Dec 15;26(24):5551–5561. doi: 10.1093/nar/26.24.5551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eger B. T., Benkovic S. J. Minimal kinetic mechanism for misincorporation by DNA polymerase I (Klenow fragment). Biochemistry. 1992 Sep 29;31(38):9227–9236. doi: 10.1021/bi00153a016. [DOI] [PubMed] [Google Scholar]
  11. Fourmy D., Recht M. I., Blanchard S. C., Puglisi J. D. Structure of the A site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science. 1996 Nov 22;274(5291):1367–1371. doi: 10.1126/science.274.5291.1367. [DOI] [PubMed] [Google Scholar]
  12. Fourmy D., Yoshizawa S., Puglisi J. D. Paromomycin binding induces a local conformational change in the A-site of 16 S rRNA. J Mol Biol. 1998 Mar 27;277(2):333–345. doi: 10.1006/jmbi.1997.1551. [DOI] [PubMed] [Google Scholar]
  13. Hansen S., Hansen L. K., Hough E. The crystal structure of tris-inhibited phospholipase C from Bacillus cereus at 1.9 A resolution. The nature of the metal ion in site 2. J Mol Biol. 1993 Jun 5;231(3):870–876. doi: 10.1006/jmbi.1993.1333. [DOI] [PubMed] [Google Scholar]
  14. Hermann T., Westhof E. Aminoglycoside binding to the hammerhead ribozyme: a general model for the interaction of cationic antibiotics with RNA. J Mol Biol. 1998 Mar 13;276(5):903–912. doi: 10.1006/jmbi.1997.1590. [DOI] [PubMed] [Google Scholar]
  15. Hoch I., Berens C., Westhof E., Schroeder R. Antibiotic inhibition of RNA catalysis: neomycin B binds to the catalytic core of the td group I intron displacing essential metal ions. J Mol Biol. 1998 Sep 25;282(3):557–569. doi: 10.1006/jmbi.1998.2035. [DOI] [PubMed] [Google Scholar]
  16. Joyce C. M., Steitz T. A. Polymerase structures and function: variations on a theme? J Bacteriol. 1995 Nov;177(22):6321–6329. doi: 10.1128/jb.177.22.6321-6329.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Körner C. G., Wahle E. Poly(A) tail shortening by a mammalian poly(A)-specific 3'-exoribonuclease. J Biol Chem. 1997 Apr 18;272(16):10448–10456. doi: 10.1074/jbc.272.16.10448. [DOI] [PubMed] [Google Scholar]
  18. Körner C. G., Wormington M., Muckenthaler M., Schneider S., Dehlin E., Wahle E. The deadenylating nuclease (DAN) is involved in poly(A) tail removal during the meiotic maturation of Xenopus oocytes. EMBO J. 1998 Sep 15;17(18):5427–5437. doi: 10.1093/emboj/17.18.5427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lazarus L. H., Kitron N. Neomycin inhibition of DNA polymerase. Biochem Pharmacol. 1973 Dec 1;22(23):3115–3117. doi: 10.1016/0006-2952(73)90198-6. [DOI] [PubMed] [Google Scholar]
  20. MacBeath G., Schreiber S. L. Printing proteins as microarrays for high-throughput function determination. Science. 2000 Sep 8;289(5485):1760–1763. doi: 10.1126/science.289.5485.1760. [DOI] [PubMed] [Google Scholar]
  21. Martinez J., Ren Y. G., Thuresson A. C., Hellman U., Astrom J., Virtanen A. A 54-kDa fragment of the Poly(A)-specific ribonuclease is an oligomeric, processive, and cap-interacting Poly(A)-specific 3' exonuclease. J Biol Chem. 2000 Aug 4;275(31):24222–24230. doi: 10.1074/jbc.M001705200. [DOI] [PubMed] [Google Scholar]
  22. McDonald L. J., Mamrack M. D. Phosphoinositide hydrolysis by phospholipase C modulated by multivalent cations La(3+), Al(3+), neomycin, polyamines, and melittin. J Lipid Mediat Cell Signal. 1995 Jan;11(1):81–91. doi: 10.1016/0929-7855(94)00029-c. [DOI] [PubMed] [Google Scholar]
  23. Mei H. Y., Mack D. P., Galan A. A., Halim N. S., Heldsinger A., Loo J. A., Moreland D. W., Sannes-Lowery K. A., Sharmeen L., Truong H. N. Discovery of selective, small-molecule inhibitors of RNA complexes--I. The Tat protein/TAR RNA complexes required for HIV-1 transcription. Bioorg Med Chem. 1997 Jun;5(6):1173–1184. doi: 10.1016/s0968-0896(97)00064-3. [DOI] [PubMed] [Google Scholar]
  24. Mian I. S. Comparative sequence analysis of ribonucleases HII, III, II PH and D. Nucleic Acids Res. 1997 Aug 15;25(16):3187–3195. doi: 10.1093/nar/25.16.3187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mikkelsen N. E., Brännvall M., Virtanen A., Kirsebom L. A. Inhibition of RNase P RNA cleavage by aminoglycosides. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6155–6160. doi: 10.1073/pnas.96.11.6155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mikkelsen N. E., Johansson K., Virtanen A., Kirsebom L. A. Aminoglycoside binding displaces a divalent metal ion in a tRNA-neomycin B complex. Nat Struct Biol. 2001 Jun;8(6):510–514. doi: 10.1038/88569. [DOI] [PubMed] [Google Scholar]
  27. Moazed D., Noller H. F. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature. 1987 Jun 4;327(6121):389–394. doi: 10.1038/327389a0. [DOI] [PubMed] [Google Scholar]
  28. Ren Yan-Guo, Martínez Javier, Virtanen Anders. Identification of the active site of poly(A)-specific ribonuclease by site-directed mutagenesis and Fe(2+)-mediated cleavage. J Biol Chem. 2001 Dec 12;277(8):5982–5987. doi: 10.1074/jbc.M111515200. [DOI] [PubMed] [Google Scholar]
  29. Rogers J., Chang A. H., von Ahsen U., Schroeder R., Davies J. Inhibition of the self-cleavage reaction of the human hepatitis delta virus ribozyme by antibiotics. J Mol Biol. 1996 Jun 28;259(5):916–925. doi: 10.1006/jmbi.1996.0369. [DOI] [PubMed] [Google Scholar]
  30. Schacht J. Antioxidant therapy attenuates aminoglycoside-induced hearing loss. Ann N Y Acad Sci. 1999 Nov 28;884:125–130. [PubMed] [Google Scholar]
  31. Stage T. K., Hertel K. J., Uhlenbeck O. C. Inhibition of the hammerhead ribozyme by neomycin. RNA. 1995 Mar;1(1):95–101. [PMC free article] [PubMed] [Google Scholar]
  32. Steitz T. A. DNA polymerases: structural diversity and common mechanisms. J Biol Chem. 1999 Jun 18;274(25):17395–17398. doi: 10.1074/jbc.274.25.17395. [DOI] [PubMed] [Google Scholar]
  33. Steitz T. A., Steitz J. A. A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6498–6502. doi: 10.1073/pnas.90.14.6498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Szilágyi L., Pusztahelyi Z. S., Jakab S., Kovács I. Microscopic protonation constants in tobramycin. An NMR and pH study with the aid of partially N-acetylated derivatives. Carbohydr Res. 1993 Sep 2;247:99–109. doi: 10.1016/0008-6215(93)84244-z. [DOI] [PubMed] [Google Scholar]
  35. Tekos A., Tsagla A., Stathopoulos C., Drainas D. Inhibition of eukaryotic ribonuclease P activity by aminoglycosides: kinetic studies. FEBS Lett. 2000 Nov 17;485(1):71–75. doi: 10.1016/s0014-5793(00)02190-6. [DOI] [PubMed] [Google Scholar]
  36. Teplova M., Wallace S. T., Tereshko V., Minasov G., Symons A. M., Cook P. D., Manoharan M., Egli M. Structural origins of the exonuclease resistance of a zwitterionic RNA. Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14240–14245. doi: 10.1073/pnas.96.25.14240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Vicens Q., Westhof E. Crystal structure of paromomycin docked into the eubacterial ribosomal decoding A site. Structure. 2001 Aug;9(8):647–658. doi: 10.1016/s0969-2126(01)00629-3. [DOI] [PubMed] [Google Scholar]
  38. Walter F., Vicens Q., Westhof E. Aminoglycoside-RNA interactions. Curr Opin Chem Biol. 1999 Dec;3(6):694–704. doi: 10.1016/s1367-5931(99)00028-9. [DOI] [PubMed] [Google Scholar]
  39. Walter Frank, Pütz Joern, Giegé Richard, Westhof Eric. Binding of tobramycin leads to conformational changes in yeast tRNA(Asp) and inhibition of aminoacylation. EMBO J. 2002 Feb 15;21(4):760–768. doi: 10.1093/emboj/21.4.760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Werstuck G., Zapp M. L., Green M. R. A non-canonical base pair within the human immunodeficiency virus rev-responsive element is involved in both rev and small molecule recognition. Chem Biol. 1996 Feb;3(2):129–137. doi: 10.1016/s1074-5521(96)90289-6. [DOI] [PubMed] [Google Scholar]
  41. Woegerbauer M., Burgmann H., Davies J., Graninger W. DNase I induced DNA degradation is inhibited by neomycin. J Antibiot (Tokyo) 2000 Mar;53(3):276–285. doi: 10.7164/antibiotics.53.276. [DOI] [PubMed] [Google Scholar]
  42. Woodcock J., Moazed D., Cannon M., Davies J., Noller H. F. Interaction of antibiotics with A- and P-site-specific bases in 16S ribosomal RNA. EMBO J. 1991 Oct;10(10):3099–3103. doi: 10.1002/j.1460-2075.1991.tb07863.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Yoshizawa S., Fourmy D., Puglisi J. D. Structural origins of gentamicin antibiotic action. EMBO J. 1998 Nov 16;17(22):6437–6448. doi: 10.1093/emboj/17.22.6437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Zapp M. L., Stern S., Green M. R. Small molecules that selectively block RNA binding of HIV-1 Rev protein inhibit Rev function and viral production. Cell. 1993 Sep 24;74(6):969–978. doi: 10.1016/0092-8674(93)90720-b. [DOI] [PubMed] [Google Scholar]
  45. Zembower T. R., Noskin G. A., Postelnick M. J., Nguyen C., Peterson L. R. The utility of aminoglycosides in an era of emerging drug resistance. Int J Antimicrob Agents. 1998 May;10(2):95–105. doi: 10.1016/s0924-8579(98)00033-8. [DOI] [PubMed] [Google Scholar]
  46. von Ahsen U., Davies J., Schroeder R. Antibiotic inhibition of group I ribozyme function. Nature. 1991 Sep 26;353(6342):368–370. doi: 10.1038/353368a0. [DOI] [PubMed] [Google Scholar]
  47. von Ahsen U., Davies J., Schroeder R. Non-competitive inhibition of group I intron RNA self-splicing by aminoglycoside antibiotics. J Mol Biol. 1992 Aug 20;226(4):935–941. doi: 10.1016/0022-2836(92)91043-o. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES