Skip to main content
RNA logoLink to RNA
. 2002 Nov;8(11):1461–1470. doi: 10.1017/s1355838202029941

Evolutionary dynamics and population control during in vitro selection and amplification with multiple targets.

Hua Shi 1, Xiaochun Fan 1, Zhuoyu Ni 1, John T Lis 1
PMCID: PMC1370352  PMID: 12458799

Abstract

Iterative cycles of in vitro selection and amplification allow rare functional nucleic acid molecules, aptamers, to be isolated from large sequence pools. Here we present an analysis of the progression of a selection experiment that simultaneously yielded two families of RNA aptamers against two disparate targets: the intended target protein (B52/SRp55) and the partitioning matrix. We tracked the sequence abundance and binding activity to reveal the enrichment of the aptamers through successive generations of selected pools. The two aptamer families showed distinct trajectories of evolution, as did members within a single family. We also developed a method to control the relative abundance of an aptamer family in selected pools. This method, involving specific ribonuclease digestion, can be used to reduce the background selection for aptamers that bind the matrix. Additionally, it can be used to isolate a full spectrum of aptamers in a sequential and exhaustive manner for all the different targets in a mixture.

Full Text

The Full Text of this article is available as a PDF (551.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown D., Gold L. RNA replication by Q beta replicase: a working model. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11558–11562. doi: 10.1073/pnas.93.21.11558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brown D., Gold L. Selection and characterization of RNAs replicated by Q beta replicase. Biochemistry. 1995 Nov 14;34(45):14775–14782. doi: 10.1021/bi00045a019. [DOI] [PubMed] [Google Scholar]
  3. Conrad R. C., Giver L., Tian Y., Ellington A. D. In vitro selection of nucleic acid aptamers that bind proteins. Methods Enzymol. 1996;267:336–367. doi: 10.1016/s0076-6879(96)67022-0. [DOI] [PubMed] [Google Scholar]
  4. Ellington A. D., Szostak J. W. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990 Aug 30;346(6287):818–822. doi: 10.1038/346818a0. [DOI] [PubMed] [Google Scholar]
  5. Faulhammer D., Cukras A. R., Lipton R. J., Landweber L. F. Molecular computation: RNA solutions to chess problems. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1385–1389. doi: 10.1073/pnas.97.4.1385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fontana W., Schuster P. A computer model of evolutionary optimization. Biophys Chem. 1987 May 9;26(2-3):123–147. doi: 10.1016/0301-4622(87)80017-0. [DOI] [PubMed] [Google Scholar]
  7. Gold L., Polisky B., Uhlenbeck O., Yarus M. Diversity of oligonucleotide functions. Annu Rev Biochem. 1995;64:763–797. doi: 10.1146/annurev.bi.64.070195.003555. [DOI] [PubMed] [Google Scholar]
  8. Hanczyc M. M., Dorit R. L. Experimental evolution of complexity: in vitro emergence of intermolecular ribozyme interactions. RNA. 1998 Mar;4(3):268–275. [PMC free article] [PubMed] [Google Scholar]
  9. Joyce G. F. In vitro evolution of nucleic acids. Curr Opin Struct Biol. 1994;4:331–336. doi: 10.1016/s0959-440x(94)90100-7. [DOI] [PubMed] [Google Scholar]
  10. Katahira M., Moriyama K., Kanagawa M., Saeki J., Kim M. H., Nagaoka M., Ide M., Uesugi S., Kono T. RNA quadruplex containing G and A. Nucleic Acids Symp Ser. 1995;(34):197–198. [PubMed] [Google Scholar]
  11. Kim J., Cheong C., Moore P. B. Tetramerization of an RNA oligonucleotide containing a GGGG sequence. Nature. 1991 May 23;351(6324):331–332. doi: 10.1038/351331a0. [DOI] [PubMed] [Google Scholar]
  12. Morris K. N., Jensen K. B., Julin C. M., Weil M., Gold L. High affinity ligands from in vitro selection: complex targets. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):2902–2907. doi: 10.1073/pnas.95.6.2902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pan W., Craven R. C., Qiu Q., Wilson C. B., Wills J. W., Golovine S., Wang J. F. Isolation of virus-neutralizing RNAs from a large pool of random sequences. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11509–11513. doi: 10.1073/pnas.92.25.11509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ringquist S., Jones T., Snyder E. E., Gibson T., Boni I., Gold L. High-affinity RNA ligands to Escherichia coli ribosomes and ribosomal protein S1: comparison of natural and unnatural binding sites. Biochemistry. 1995 Mar 21;34(11):3640–3648. doi: 10.1021/bi00011a019. [DOI] [PubMed] [Google Scholar]
  15. Robertson D. L., Joyce G. F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature. 1990 Mar 29;344(6265):467–468. doi: 10.1038/344467a0. [DOI] [PubMed] [Google Scholar]
  16. Schuster P. Evolution in silico and in vitro: the RNA model. Biol Chem. 2001 Sep;382(9):1301–1314. doi: 10.1515/BC.2001.162. [DOI] [PubMed] [Google Scholar]
  17. Tuerk C., Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990 Aug 3;249(4968):505–510. doi: 10.1126/science.2200121. [DOI] [PubMed] [Google Scholar]
  18. Tuerk C., MacDougal S., Gold L. RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6988–6992. doi: 10.1073/pnas.89.15.6988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wilson D. S., Szostak J. W. In vitro selection of functional nucleic acids. Annu Rev Biochem. 1999;68:611–647. doi: 10.1146/annurev.biochem.68.1.611. [DOI] [PubMed] [Google Scholar]
  20. Wong I., Lohman T. M. A double-filter method for nitrocellulose-filter binding: application to protein-nucleic acid interactions. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5428–5432. doi: 10.1073/pnas.90.12.5428. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES