Abstract
We compared the gene expression patterns of fetal and adult porcine brains and identified a sequence tag that was more abundant in adult than in fetal brain. The RNA corresponding to the sequence tag has the highest expression level in adult cerebellum. Lower expression levels of the transcript were found in adult cerebrum, pituitary, and uterus, as well as in fetal brain, heart, intestine, kidney, and liver. The sequence tag was used to screen a cDNA library from adult porcine brain. Two independent clones of 2,273 nt and 1,701 nt were isolated. The shorter cDNA is a 5'-truncated form of the longer clone, and both clones have almost identical sequences with multiple start and stop codons in all three reading frames. Screening of two different human brain cDNA libraries with porcine cDNA probes resulted in four overlapping cDNA fragments, which were assembled to one contig of 2,336 nt in length. Like noncoding RNAs, the porcine and human sequences have no common conserved open reading frame and share stretches of high homology interrupted by stretches with almost no homology. The human and porcine RNAs were named UM 9(5)h and UM 9(5)p, respectively. They are part of larger transcripts, which are transcribed from single-copy genes, they have very similar tissue distributions, and their sequences are colinear with the respective genomic fragment.
Full Text
The Full Text of this article is available as a PDF (754.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amrein H., Axel R. Genes expressed in neurons of adult male Drosophila. Cell. 1997 Feb 21;88(4):459–469. doi: 10.1016/s0092-8674(00)81886-3. [DOI] [PubMed] [Google Scholar]
- Bielinska B., Blaydes S. M., Buiting K., Yang T., Krajewska-Walasek M., Horsthemke B., Brannan C. I. De novo deletions of SNRPN exon 1 in early human and mouse embryos result in a paternal to maternal imprint switch. Nat Genet. 2000 May;25(1):74–78. doi: 10.1038/75629. [DOI] [PubMed] [Google Scholar]
- Brockdorff N., Ashworth A., Kay G. F., McCabe V. M., Norris D. P., Cooper P. J., Swift S., Rastan S. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell. 1992 Oct 30;71(3):515–526. doi: 10.1016/0092-8674(92)90519-i. [DOI] [PubMed] [Google Scholar]
- Brosius J. RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements. Gene. 1999 Sep 30;238(1):115–134. doi: 10.1016/s0378-1119(99)00227-9. [DOI] [PubMed] [Google Scholar]
- Brown C. J., Hendrich B. D., Rupert J. L., Lafrenière R. G., Xing Y., Lawrence J., Willard H. F. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell. 1992 Oct 30;71(3):527–542. doi: 10.1016/0092-8674(92)90520-m. [DOI] [PubMed] [Google Scholar]
- Bussemakers M. J., van Bokhoven A., Verhaegh G. W., Smit F. P., Karthaus H. F., Schalken J. A., Debruyne F. M., Ru N., Isaacs W. B. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 1999 Dec 1;59(23):5975–5979. [PubMed] [Google Scholar]
- Chang D. D., Clayton D. A. Mouse RNAase MRP RNA is encoded by a nuclear gene and contains a decamer sequence complementary to a conserved region of mitochondrial RNA substrate. Cell. 1989 Jan 13;56(1):131–139. doi: 10.1016/0092-8674(89)90991-4. [DOI] [PubMed] [Google Scholar]
- Chu S., Archer R. H., Zengel J. M., Lindahl L. The RNA of RNase MRP is required for normal processing of ribosomal RNA. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):659–663. doi: 10.1073/pnas.91.2.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heard E., Lovell-Badge R., Avner P. Anti-Xistentialism. Nat Genet. 1999 Apr;21(4):343–344. doi: 10.1038/7661. [DOI] [PubMed] [Google Scholar]
- Isbrandt D., Leicher T., Waldschütz R., Zhu X., Luhmann U., Michel U., Sauter K., Pongs O. Gene structures and expression profiles of three human KCND (Kv4) potassium channels mediating A-type currents I(TO) and I(SA). Genomics. 2000 Mar 1;64(2):144–154. doi: 10.1006/geno.2000.6117. [DOI] [PubMed] [Google Scholar]
- Jong M. T., Carey A. H., Caldwell K. A., Lau M. H., Handel M. A., Driscoll D. J., Stewart C. L., Rinchik E. M., Nicholls R. D. Imprinting of a RING zinc-finger encoding gene in the mouse chromosome region homologous to the Prader-Willi syndrome genetic region. Hum Mol Genet. 1999 May;8(5):795–803. doi: 10.1093/hmg/8.5.795. [DOI] [PubMed] [Google Scholar]
- Kloc M., Spohr G., Etkin L. D. Translocation of repetitive RNA sequences with the germ plasm in Xenopus oocytes. Science. 1993 Dec 10;262(5140):1712–1714. doi: 10.1126/science.7505061. [DOI] [PubMed] [Google Scholar]
- Komine Y., Tanaka N. K., Yano R., Takai S., Yuasa S., Shiroishi T., Tsuchiya K., Yamamori T. A novel type of non-coding RNA expressed in the rat brain. Brain Res Mol Brain Res. 1999 Mar 20;66(1-2):1–13. doi: 10.1016/s0169-328x(98)00343-x. [DOI] [PubMed] [Google Scholar]
- Koob M. D., Moseley M. L., Schut L. J., Benzow K. A., Bird T. D., Day J. W., Ranum L. P. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8) Nat Genet. 1999 Apr;21(4):379–384. doi: 10.1038/7710. [DOI] [PubMed] [Google Scholar]
- Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987 Oct 26;15(20):8125–8148. doi: 10.1093/nar/15.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kozak M. An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol. 1991 Nov;115(4):887–903. doi: 10.1083/jcb.115.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kozak M. Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs. Mol Cell Biol. 1989 Nov;9(11):5134–5142. doi: 10.1128/mcb.9.11.5134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lanz R. B., McKenna N. J., Onate S. A., Albrecht U., Wong J., Tsai S. Y., Tsai M. J., O'Malley B. W. A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell. 1999 Apr 2;97(1):17–27. doi: 10.1016/s0092-8674(00)80711-4. [DOI] [PubMed] [Google Scholar]
- Lee J. T., Davidow L. S., Warshawsky D. Tsix, a gene antisense to Xist at the X-inactivation centre. Nat Genet. 1999 Apr;21(4):400–404. doi: 10.1038/7734. [DOI] [PubMed] [Google Scholar]
- Lee R. C., Feinbaum R. L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993 Dec 3;75(5):843–854. doi: 10.1016/0092-8674(93)90529-y. [DOI] [PubMed] [Google Scholar]
- Lipshitz H. D., Peattie D. A., Hogness D. S. Novel transcripts from the Ultrabithorax domain of the bithorax complex. Genes Dev. 1987 May;1(3):307–322. doi: 10.1101/gad.1.3.307. [DOI] [PubMed] [Google Scholar]
- Liu A. Y., Torchia B. S., Migeon B. R., Siliciano R. F. The human NTT gene: identification of a novel 17-kb noncoding nuclear RNA expressed in activated CD4+ T cells. Genomics. 1997 Jan 15;39(2):171–184. doi: 10.1006/geno.1996.4463. [DOI] [PubMed] [Google Scholar]
- Lyle R., Watanabe D., te Vruchte D., Lerchner W., Smrzka O. W., Wutz A., Schageman J., Hahner L., Davies C., Barlow D. P. The imprinted antisense RNA at the Igf2r locus overlaps but does not imprint Mas1. Nat Genet. 2000 May;25(1):19–21. doi: 10.1038/75546. [DOI] [PubMed] [Google Scholar]
- Malik K., Salpekar A., Hancock A., Moorwood K., Jackson S., Charles A., Brown K. W. Identification of differential methylation of the WT1 antisense regulatory region and relaxation of imprinting in Wilms' tumor. Cancer Res. 2000 May 1;60(9):2356–2360. [PubMed] [Google Scholar]
- Meller V. H., Wu K. H., Roman G., Kuroda M. I., Davis R. L. roX1 RNA paints the X chromosome of male Drosophila and is regulated by the dosage compensation system. Cell. 1997 Feb 21;88(4):445–457. doi: 10.1016/s0092-8674(00)81885-1. [DOI] [PubMed] [Google Scholar]
- Michel U., Stringaris A. K., Nau R., Rieckmann P. Differential expression of sense and antisense transcripts of the mitochondrial DNA region coding for ATPase 6 in fetal and adult porcine brain: identification of novel unusually assembled mitochondrial RNAs. Biochem Biophys Res Commun. 2000 Apr 29;271(1):170–180. doi: 10.1006/bbrc.2000.2595. [DOI] [PubMed] [Google Scholar]
- Michel Uwe. Non-coding ribonucleic acids--a class of their own? Int Rev Cytol. 2002;218:143–219. doi: 10.1016/s0074-7696(02)18013-2. [DOI] [PubMed] [Google Scholar]
- Millar J. K., Wilson-Annan J. C., Anderson S., Christie S., Taylor M. S., Semple C. A., Devon R. S., St Clair D. M., Muir W. J., Blackwood D. H. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet. 2000 May 22;9(9):1415–1423. doi: 10.1093/hmg/9.9.1415. [DOI] [PubMed] [Google Scholar]
- Mise N., Goto Y., Nakajima N., Takagi N. Molecular cloning of antisense transcripts of the mouse Xist gene. Biochem Biophys Res Commun. 1999 May 19;258(3):537–541. doi: 10.1006/bbrc.1999.0681. [DOI] [PubMed] [Google Scholar]
- Mitsuya K., Meguro M., Lee M. P., Katoh M., Schulz T. C., Kugoh H., Yoshida M. A., Niikawa N., Feinberg A. P., Oshimura M. LIT1, an imprinted antisense RNA in the human KvLQT1 locus identified by screening for differentially expressed transcripts using monochromosomal hybrids. Hum Mol Genet. 1999 Jul;8(7):1209–1217. doi: 10.1093/hmg/8.7.1209. [DOI] [PubMed] [Google Scholar]
- Ninomiya S., Isomura M., Narahara K., Seino Y., Nakamura Y. Isolation of a testis-specific cDNA on chromosome 17q from a region adjacent to the breakpoint of t(12;17) observed in a patient with acampomelic campomelic dysplasia and sex reversal. Hum Mol Genet. 1996 Jan;5(1):69–72. doi: 10.1093/hmg/5.1.69. [DOI] [PubMed] [Google Scholar]
- Rastinejad F., Blau H. M. Genetic complementation reveals a novel regulatory role for 3' untranslated regions in growth and differentiation. Cell. 1993 Mar 26;72(6):903–917. doi: 10.1016/0092-8674(93)90579-f. [DOI] [PubMed] [Google Scholar]
- Rougeulle C., Cardoso C., Fontés M., Colleaux L., Lalande M. An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript. Nat Genet. 1998 May;19(1):15–16. doi: 10.1038/ng0598-15. [DOI] [PubMed] [Google Scholar]
- Saitoh S., Buiting K., Rogan P. K., Buxton J. L., Driscoll D. J., Arnemann J., König R., Malcolm S., Horsthemke B., Nicholls R. D. Minimal definition of the imprinting center and fixation of chromosome 15q11-q13 epigenotype by imprinting mutations. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7811–7815. doi: 10.1073/pnas.93.15.7811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takeda K., Ichijo H., Fujii M., Mochida Y., Saitoh M., Nishitoh H., Sampath T. K., Miyazono K. Identification of a novel bone morphogenetic protein-responsive gene that may function as a noncoding RNA. J Biol Chem. 1998 Jul 3;273(27):17079–17085. doi: 10.1074/jbc.273.27.17079. [DOI] [PubMed] [Google Scholar]
- Topper J. N., Clayton D. A. Characterization of human MRP/Th RNA and its nuclear gene: full length MRP/Th RNA is an active endoribonuclease when assembled as an RNP. Nucleic Acids Res. 1990 Feb 25;18(4):793–799. doi: 10.1093/nar/18.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tycowski K. T., Shu M. D., Steitz J. A. A mammalian gene with introns instead of exons generating stable RNA products. Nature. 1996 Feb 1;379(6564):464–466. doi: 10.1038/379464a0. [DOI] [PubMed] [Google Scholar]
- Velleca M. A., Wallace M. C., Merlie J. P. A novel synapse-associated noncoding RNA. Mol Cell Biol. 1994 Nov;14(11):7095–7104. doi: 10.1128/mcb.14.11.7095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallenhorst S., Holtz W. Transfer of pig embryos to different uterine sites. J Anim Sci. 1999 Sep;77(9):2327–2329. doi: 10.2527/1999.7792327x. [DOI] [PubMed] [Google Scholar]
- Watanabe Y., Yamamoto M. S. pombe mei2+ encodes an RNA-binding protein essential for premeiotic DNA synthesis and meiosis I, which cooperates with a novel RNA species meiRNA. Cell. 1994 Aug 12;78(3):487–498. doi: 10.1016/0092-8674(94)90426-x. [DOI] [PubMed] [Google Scholar]
- Yulug I. G., Yulug A., Fisher E. M. The frequency and position of Alu repeats in cDNAs, as determined by database searching. Genomics. 1995 Jun 10;27(3):544–548. doi: 10.1006/geno.1995.1090. [DOI] [PubMed] [Google Scholar]