Abstract
Friedreich ataxia (FRDA), an autosomal recessive, neurodegenerative disease is the most common inherited ataxia. The vast majority of patients are homozygous for an abnormal expansion of a polymorphic GAA triplet repeat in the first intron of the X25 gene, which encodes a mitochondrial protein, frataxin. Cellular degeneration in FRDA may be caused by mitochondrial dysfunction, possibly due to abnormal iron accumulation, as observed in yeast cells deficient for a frataxin homologue. Using RNase protection assays, we have shown that patients homozygous for the expansion have a marked deficiency of mature X25 mRNA. The mechanism(s) by which the intronic GAA triplet expansion results in this reduction of X25 mRNA is presently unknown. No evidence was found for abnormal splicing of the expanded intron 1. Using cloned repeat sequences from FRDA patients, we show that the GAA repeat per se interferes with in vitro transcription in a length-dependent manner, with both prokaryotic and eukaryotic enzymes. This interference was most pronounced in the physiological orientation of transcription, when synthesis of the GAA-rich transcript was attempted. These results are consistent with the observed negative correlation between triplet-repeat length and the age at onset of disease. Using in vitro chemical probing strategies, we also show that the GAA triplet repeat adopts an unusual DNA structure, demonstrated by hyperreactivity to osmium tetroxide, hydroxylamine, and diethyl pyrocarbonate. These results raise the possibility that the GAA triplet-repeat expansion may result in an unusual yet stable DNA structure that interferes with transcription, ultimately leading to a cellular deficiency of frataxin.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Babcock M., de Silva D., Oaks R., Davis-Kaplan S., Jiralerspong S., Montermini L., Pandolfo M., Kaplan J. Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science. 1997 Jun 13;276(5319):1709–1712. doi: 10.1126/science.276.5319.1709. [DOI] [PubMed] [Google Scholar]
- Barbeau A., Roy M., Sadibelouiz M., Wilensky M. A. Recessive ataxia in Acadians and "Cajuns". Can J Neurol Sci. 1984 Nov;11(4 Suppl):526–533. doi: 10.1017/s0317167100034995. [DOI] [PubMed] [Google Scholar]
- Bernués J., Beltrán R., Casasnovas J. M., Azorín F. Structural polymorphism of homopurine--homopyrimidine sequences: the secondary DNA structure adopted by a d(GA.CT)22 sequence in the presence of zinc ions. EMBO J. 1989 Jul;8(7):2087–2094. doi: 10.1002/j.1460-2075.1989.tb03617.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bidichandani S. I., Ashizawa T., Patel P. I. Atypical Friedreich ataxia caused by compound heterozygosity for a novel missense mutation and the GAA triplet-repeat expansion. Am J Hum Genet. 1997 May;60(5):1251–1256. [PMC free article] [PubMed] [Google Scholar]
- Britten R. J. DNA sequence insertion and evolutionary variation in gene regulation. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9374–9377. doi: 10.1073/pnas.93.18.9374. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campuzano V., Montermini L., Moltò M. D., Pianese L., Cossée M., Cavalcanti F., Monros E., Rodius F., Duclos F., Monticelli A. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996 Mar 8;271(5254):1423–1427. doi: 10.1126/science.271.5254.1423. [DOI] [PubMed] [Google Scholar]
- Cossée M., Campuzano V., Koutnikova H., Fischbeck K., Mandel J. L., Koenig M., Bidichandani S. I., Patel P. I., Moltè M. D., Cañizares J. Frataxin fracas. Nat Genet. 1997 Apr;15(4):337–338. doi: 10.1038/ng0497-337. [DOI] [PubMed] [Google Scholar]
- Cossée M., Schmitt M., Campuzano V., Reutenauer L., Moutou C., Mandel J. L., Koenig M. Evolution of the Friedreich's ataxia trinucleotide repeat expansion: founder effect and premutations. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7452–7457. doi: 10.1073/pnas.94.14.7452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Michele G., Filla A., Cavalcanti F., Di Maio L., Pianese L., Castaldo I., Calabrese O., Monticelli A., Varrone S., Campanella G. Late onset Friedreich's disease: clinical features and mapping of mutation to the FRDA locus. J Neurol Neurosurg Psychiatry. 1994 Aug;57(8):977–979. doi: 10.1136/jnnp.57.8.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dürr A., Cossee M., Agid Y., Campuzano V., Mignard C., Penet C., Mandel J. L., Brice A., Koenig M. Clinical and genetic abnormalities in patients with Friedreich's ataxia. N Engl J Med. 1996 Oct 17;335(16):1169–1175. doi: 10.1056/NEJM199610173351601. [DOI] [PubMed] [Google Scholar]
- Epplen C., Epplen J. T., Frank G., Miterski B., Santos E. J., Schöls L. Differential stability of the (GAA)n tract in the Friedreich ataxia (STM7) gene. Hum Genet. 1997 Jun;99(6):834–836. doi: 10.1007/s004390050458. [DOI] [PubMed] [Google Scholar]
- Escudé C., Giovannangeli C., Sun J. S., Lloyd D. H., Chen J. K., Gryaznov S. M., Garestier T., Hélène C. Stable triple helices formed by oligonucleotide N3'-->P5' phosphoramidates inhibit transcription elongation. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4365–4369. doi: 10.1073/pnas.93.9.4365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans T., Efstratiadis A. Sequence-dependent S1 nuclease hypersensitivity of a heteronomous DNA duplex. J Biol Chem. 1986 Nov 5;261(31):14771–14780. [PubMed] [Google Scholar]
- Filla A., De Michele G., Cavalcanti F., Pianese L., Monticelli A., Campanella G., Cocozza S. The relationship between trinucleotide (GAA) repeat length and clinical features in Friedreich ataxia. Am J Hum Genet. 1996 Sep;59(3):554–560. [PMC free article] [PubMed] [Google Scholar]
- Finocchiaro G., Baio G., Micossi P., Pozza G., di Donato S. Glucose metabolism alterations in Friedreich's ataxia. Neurology. 1988 Aug;38(8):1292–1296. doi: 10.1212/wnl.38.8.1292. [DOI] [PubMed] [Google Scholar]
- Frank-Kamenetskii M. D., Mirkin S. M. Triplex DNA structures. Annu Rev Biochem. 1995;64:65–95. doi: 10.1146/annurev.bi.64.070195.000433. [DOI] [PubMed] [Google Scholar]
- Giovannangeli C., Perrouault L., Escudé C., Gryaznov S., Hélène C. Efficient inhibition of transcription elongation in vitro by oligonucleotide phosphoramidates targeted to proviral HIV DNA. J Mol Biol. 1996 Aug 23;261(3):386–398. doi: 10.1006/jmbi.1996.0471. [DOI] [PubMed] [Google Scholar]
- Grabczyk E., Fishman M. C. A long purine-pyrimidine homopolymer acts as a transcriptional diode. J Biol Chem. 1995 Jan 27;270(4):1791–1797. doi: 10.1074/jbc.270.4.1791. [DOI] [PubMed] [Google Scholar]
- Hanley T., Merlie J. P. Transgene detection in unpurified mouse tail DNA by polymerase chain reaction. Biotechniques. 1991 Jan;10(1):56–56. [PubMed] [Google Scholar]
- Hanvey J. C., Shimizu M., Wells R. D. Intramolecular DNA triplexes in supercoiled plasmids. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6292–6296. doi: 10.1073/pnas.85.17.6292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harding A. E. Friedreich's ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain. 1981 Sep;104(3):589–620. doi: 10.1093/brain/104.3.589. [DOI] [PubMed] [Google Scholar]
- Hartman D. A., Kuo S. R., Broker T. R., Chow L. T., Wells R. D. Intermolecular triplex formation distorts the DNA duplex in the regulatory region of human papillomavirus type-11. J Biol Chem. 1992 Mar 15;267(8):5488–5494. [PubMed] [Google Scholar]
- Hentschel C. C. Homocopolymer sequences in the spacer of a sea urchin histone gene repeat are sensitive to S1 nuclease. Nature. 1982 Feb 25;295(5851):714–716. doi: 10.1038/295714a0. [DOI] [PubMed] [Google Scholar]
- Htun H., Dahlberg J. E. Single strands, triple strands, and kinks in H-DNA. Science. 1988 Sep 30;241(4874):1791–1796. doi: 10.1126/science.3175620. [DOI] [PubMed] [Google Scholar]
- Htun H., Lund E., Dahlberg J. E. Human U1 RNA genes contain an unusually sensitive nuclease S1 cleavage site within the conserved 3' flanking region. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7288–7292. doi: 10.1073/pnas.81.23.7288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kang S., Wohlrab F., Wells R. D. GC-rich flanking tracts decrease the kinetics of intramolecular DNA triplex formation. J Biol Chem. 1992 Sep 25;267(27):19435–19442. [PubMed] [Google Scholar]
- Kariya Y., Kato K., Hayashizaki Y., Himeno S., Tarui S., Matsubara K. Revision of consensus sequence of human Alu repeats--a review. Gene. 1987;53(1):1–10. doi: 10.1016/0378-1119(87)90087-4. [DOI] [PubMed] [Google Scholar]
- Kohwi Y., Kohwi-Shigematsu T. Magnesium ion-dependent triple-helix structure formed by homopurine-homopyrimidine sequences in supercoiled plasmid DNA. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3781–3785. doi: 10.1073/pnas.85.11.3781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCarthy J. G., Heywood S. M. A long polypyrimidine/polypurine tract induces an altered DNA conformation on the 3' coding region of the adjacent myosin heavy chain gene. Nucleic Acids Res. 1987 Oct 12;15(19):8069–8085. doi: 10.1093/nar/15.19.8069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montermini L., Andermann E., Labuda M., Richter A., Pandolfo M., Cavalcanti F., Pianese L., Iodice L., Farina G., Monticelli A. The Friedreich ataxia GAA triplet repeat: premutation and normal alleles. Hum Mol Genet. 1997 Aug;6(8):1261–1266. doi: 10.1093/hmg/6.8.1261. [DOI] [PubMed] [Google Scholar]
- Montermini L., Richter A., Morgan K., Justice C. M., Julien D., Castellotti B., Mercier J., Poirier J., Capozzoli F., Bouchard J. P. Phenotypic variability in Friedreich ataxia: role of the associated GAA triplet repeat expansion. Ann Neurol. 1997 May;41(5):675–682. doi: 10.1002/ana.410410518. [DOI] [PubMed] [Google Scholar]
- Ohshima K., Kang S., Larson J. E., Wells R. D. Cloning, characterization, and properties of seven triplet repeat DNA sequences. J Biol Chem. 1996 Jul 12;271(28):16773–16783. doi: 10.1074/jbc.271.28.16773. [DOI] [PubMed] [Google Scholar]
- Palau F., De Michele G., Vilchez J. J., Pandolfo M., Monrós E., Cocozza S., Smeyers P., Lopez-Arlandis J., Campanella G., Di Donato S. Early-onset ataxia with cardiomyopathy and retained tendon reflexes maps to the Friedreich's ataxia locus on chromosome 9q. Ann Neurol. 1995 Mar;37(3):359–362. doi: 10.1002/ana.410370312. [DOI] [PubMed] [Google Scholar]
- Pearson C. E., Sinden R. R. Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci. Biochemistry. 1996 Apr 16;35(15):5041–5053. doi: 10.1021/bi9601013. [DOI] [PubMed] [Google Scholar]
- Reaban M. E., Griffin J. A. Induction of RNA-stabilized DNA conformers by transcription of an immunoglobulin switch region. Nature. 1990 Nov 22;348(6299):342–344. doi: 10.1038/348342a0. [DOI] [PubMed] [Google Scholar]
- Semerad C. L., Maher L. J., 3rd Exclusion of RNA strands from a purine motif triple helix. Nucleic Acids Res. 1994 Dec 11;22(24):5321–5325. doi: 10.1093/nar/22.24.5321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Skoog J. U., Maher L. J., 3rd Repression of bacteriophage promoters by DNA and RNA oligonucleotides. Nucleic Acids Res. 1993 May 11;21(9):2131–2138. doi: 10.1093/nar/21.9.2131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stavnezer J. Triple helix stabilization? Nature. 1991 Jun 6;351(6326):447–448. doi: 10.1038/351447b0. [DOI] [PubMed] [Google Scholar]
- Voloshin O. N., Mirkin S. M., Lyamichev V. I., Belotserkovskii B. P., Frank-Kamenetskii M. D. Chemical probing of homopurine-homopyrimidine mirror repeats in supercoiled DNA. Nature. 1988 Jun 2;333(6172):475–476. doi: 10.1038/333475a0. [DOI] [PubMed] [Google Scholar]
- Wells R. D., Collier D. A., Hanvey J. C., Shimizu M., Wohlrab F. The chemistry and biology of unusual DNA structures adopted by oligopurine.oligopyrimidine sequences. FASEB J. 1988 Nov;2(14):2939–2949. [PubMed] [Google Scholar]
- Wu H. Y., Shyy S. H., Wang J. C., Liu L. F. Transcription generates positively and negatively supercoiled domains in the template. Cell. 1988 May 6;53(3):433–440. doi: 10.1016/0092-8674(88)90163-8. [DOI] [PubMed] [Google Scholar]