Full Text
The Full Text of this article is available as a PDF (180.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Armitage M. M., Kivlin J. D., Ferrell R. E. A progressive early onset cataract gene maps to human chromosome 17q24. Nat Genet. 1995 Jan;9(1):37–40. doi: 10.1038/ng0195-37. [DOI] [PubMed] [Google Scholar]
- Berry V., Ionides A. C., Moore A. T., Plant C., Bhattacharya S. S., Shiels A. A locus for autosomal dominant anterior polar cataract on chromosome 17p. Hum Mol Genet. 1996 Mar;5(3):415–419. doi: 10.1093/hmg/5.3.415. [DOI] [PubMed] [Google Scholar]
- Bloemendal H., Raats J. M., Pieper F. R., Benedetti E. L., Dunia I. Transgenic mice carrying chimeric or mutated type III intermediate filament (IF) genes. Cell Mol Life Sci. 1997 Jan;53(1):1–12. doi: 10.1007/PL00000571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brady J. P., Garland D., Duglas-Tabor Y., Robison W. G., Jr, Groome A., Wawrousek E. F. Targeted disruption of the mouse alpha A-crystallin gene induces cataract and cytoplasmic inclusion bodies containing the small heat shock protein alpha B-crystallin. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):884–889. doi: 10.1073/pnas.94.3.884. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brakenhoff R. H., Henskens H. A., van Rossum M. W., Lubsen N. H., Schoenmakers J. G. Activation of the gamma E-crystallin pseudogene in the human hereditary Coppock-like cataract. Hum Mol Genet. 1994 Feb;3(2):279–283. doi: 10.1093/hmg/3.2.279. [DOI] [PubMed] [Google Scholar]
- Capetanaki Y., Smith S., Heath J. P. Overexpression of the vimentin gene in transgenic mice inhibits normal lens cell differentiation. J Cell Biol. 1989 Oct;109(4 Pt 1):1653–1664. doi: 10.1083/jcb.109.4.1653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carter J. M., Hutcheson A. M., Quinlan R. A. In vitro studies on the assembly properties of the lens proteins CP49, CP115: coassembly with alpha-crystallin but not with vimentin. Exp Eye Res. 1995 Feb;60(2):181–192. doi: 10.1016/s0014-4835(95)80009-3. [DOI] [PubMed] [Google Scholar]
- Cartier M., Breitman M. L., Tsui L. C. A frameshift mutation in the gamma E-crystallin gene of the Elo mouse. Nat Genet. 1992 Sep;2(1):42–45. doi: 10.1038/ng0992-42. [DOI] [PubMed] [Google Scholar]
- Chambers C., Russell P. Deletion mutation in an eye lens beta-crystallin. An animal model for inherited cataracts. J Biol Chem. 1991 Apr 15;266(11):6742–6746. [PubMed] [Google Scholar]
- Conneally P. M., Wilson A. F., Merritt A. D., Helveston E. M., Palmer C. G., Wang L. Y. Confirmation of genetic heterogeneity in autosomal dominant forms of congenital cataracts from linkage studies. Cytogenet Cell Genet. 1978;22(1-6):295–297. doi: 10.1159/000130957. [DOI] [PubMed] [Google Scholar]
- Cvekl A., Piatigorsky J. Lens development and crystallin gene expression: many roles for Pax-6. Bioessays. 1996 Aug;18(8):621–630. doi: 10.1002/bies.950180805. [DOI] [PubMed] [Google Scholar]
- Delaye M., Tardieu A. Short-range order of crystallin proteins accounts for eye lens transparency. 1983 Mar 31-Apr 6Nature. 302(5907):415–417. doi: 10.1038/302415a0. [DOI] [PubMed] [Google Scholar]
- Donahue R. P., Bias W. B., Renwick J. H., McKusick V. A. Probable assignment of the Duffy blood group locus to chromosome 1 in man. Proc Natl Acad Sci U S A. 1968 Nov;61(3):949–955. doi: 10.1073/pnas.61.3.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunia I., Smit J. J., van der Valk M. A., Bloemendal H., Borst P., Benedetti E. L. Human multidrug resistance 3-P-glycoprotein expression in transgenic mice induces lens membrane alterations leading to cataract. J Cell Biol. 1996 Feb;132(4):701–716. doi: 10.1083/jcb.132.4.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Egwuagu C. E., Sztein J., Chan C. C., Reid W., Mahdi R., Nussenblatt R. B., Chepelinsky A. B. Ectopic expression of gamma interferon in the eyes of transgenic mice induces ocular pathology and MHC class II gene expression. Invest Ophthalmol Vis Sci. 1994 Feb;35(2):332–341. [PubMed] [Google Scholar]
- Ehling U. H. Genetic risk assessment. Annu Rev Genet. 1991;25:255–280. doi: 10.1146/annurev.ge.25.120191.001351. [DOI] [PubMed] [Google Scholar]
- Eiberg H., Lund A. M., Warburg M., Rosenberg T. Assignment of congenital cataract Volkmann type (CCV) to chromosome 1p36. Hum Genet. 1995 Jul;96(1):33–38. doi: 10.1007/BF00214183. [DOI] [PubMed] [Google Scholar]
- Eiberg H., Marner E., Rosenberg T., Mohr J. Marner's cataract (CAM) assigned to chromosome 16: linkage to haptoglobin. Clin Genet. 1988 Oct;34(4):272–275. doi: 10.1111/j.1399-0004.1988.tb02875.x. [DOI] [PubMed] [Google Scholar]
- Eva A., Graziani G., Zannini M., Merin L. M., Khillan J. S., Overbeek P. A. Dominant dysplasia of the lens in transgenic mice expressing the dbl oncogene. New Biol. 1991 Feb;3(2):158–168. [PubMed] [Google Scholar]
- Geiger K., Howes E., Gallina M., Huang X. J., Travis G. H., Sarvetnick N. Transgenic mice expressing IFN-gamma in the retina develop inflammation of the eye and photoreceptor loss. Invest Ophthalmol Vis Sci. 1994 May;35(6):2667–2681. [PubMed] [Google Scholar]
- Gong X., Li E., Klier G., Huang Q., Wu Y., Lei H., Kumar N. M., Horwitz J., Gilula N. B. Disruption of alpha3 connexin gene leads to proteolysis and cataractogenesis in mice. Cell. 1997 Dec 12;91(6):833–843. doi: 10.1016/s0092-8674(00)80471-7. [DOI] [PubMed] [Google Scholar]
- Graw J. Cataract mutations as a tool for developmental geneticists. Ophthalmic Res. 1996;28 (Suppl 1):8–18. doi: 10.1159/000267936. [DOI] [PubMed] [Google Scholar]
- Griep A. E., Herber R., Jeon S., Lohse J. K., Dubielzig R. R., Lambert P. F. Tumorigenicity by human papillomavirus type 16 E6 and E7 in transgenic mice correlates with alterations in epithelial cell growth and differentiation. J Virol. 1993 Mar;67(3):1373–1384. doi: 10.1128/jvi.67.3.1373-1384.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gruijters W. T., Kistler J., Bullivant S., Goodenough D. A. Immunolocalization of MP70 in lens fiber 16-17-nm intercellular junctions. J Cell Biol. 1987 Mar;104(3):565–572. doi: 10.1083/jcb.104.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Head M. W., Sedowofia K., Clayton R. M. Beta B2-crystallin in the mammalian retina. Exp Eye Res. 1995 Oct;61(4):423–428. doi: 10.1016/s0014-4835(05)80137-x. [DOI] [PubMed] [Google Scholar]
- Horwitz J. Proctor Lecture. The function of alpha-crystallin. Invest Ophthalmol Vis Sci. 1993 Jan;34(1):10–22. [PubMed] [Google Scholar]
- Kantorow M., Piatigorsky J. Alpha-crystallin/small heat shock protein has autokinase activity. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3112–3116. doi: 10.1073/pnas.91.8.3112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klemenz R., Fröhli E., Steiger R. H., Schäfer R., Aoyama A. Alpha B-crystallin is a small heat shock protein. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3652–3656. doi: 10.1073/pnas.88.9.3652. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kramer P., Yount J., Mitchell T., LaMorticella D., Carrero-Valenzuela R., Lovrien E., Maumenee I., Litt M. A second gene for cerulean cataracts maps to the beta crystallin region on chromosome 22. Genomics. 1996 Aug 1;35(3):539–542. doi: 10.1006/geno.1996.0395. [DOI] [PubMed] [Google Scholar]
- Lang R. A., Metcalf D., Cuthbertson R. A., Lyons I., Stanley E., Kelso A., Kannourakis G., Williamson D. J., Klintworth G. K., Gonda T. J. Transgenic mice expressing a hemopoietic growth factor gene (GM-CSF) develop accumulations of macrophages, blindness, and a fatal syndrome of tissue damage. Cell. 1987 Nov 20;51(4):675–686. doi: 10.1016/0092-8674(87)90136-x. [DOI] [PubMed] [Google Scholar]
- Litt M., Carrero-Valenzuela R., LaMorticella D. M., Schultz D. W., Mitchell T. N., Kramer P., Maumenee I. H. Autosomal dominant cerulean cataract is associated with a chain termination mutation in the human beta-crystallin gene CRYBB2. Hum Mol Genet. 1997 May;6(5):665–668. doi: 10.1093/hmg/6.5.665. [DOI] [PubMed] [Google Scholar]
- Liu J., Hales A. M., Chamberlain C. G., McAvoy J. W. Induction of cataract-like changes in rat lens epithelial explants by transforming growth factor beta. Invest Ophthalmol Vis Sci. 1994 Feb;35(2):388–401. [PubMed] [Google Scholar]
- Lubsen N. H., Aarts H. J., Schoenmakers J. G. The evolution of lenticular proteins: the beta- and gamma-crystallin super gene family. Prog Biophys Mol Biol. 1988;51(1):47–76. doi: 10.1016/0079-6107(88)90010-7. [DOI] [PubMed] [Google Scholar]
- Lubsen N. H., Renwick J. H., Tsui L. C., Breitman M. L., Schoenmakers J. G. A locus for a human hereditary cataract is closely linked to the gamma-crystallin gene family. Proc Natl Acad Sci U S A. 1987 Jan;84(2):489–492. doi: 10.1073/pnas.84.2.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mackay D., Ionides A., Berry V., Moore A., Bhattacharya S., Shiels A. A new locus for dominant "zonular pulverulent" cataract, on chromosome 13. Am J Hum Genet. 1997 Jun;60(6):1474–1478. doi: 10.1086/515468. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mahon K. A., Chepelinsky A. B., Khillan J. S., Overbeek P. A., Piatigorsky J., Westphal H. Oncogenesis of the lens in transgenic mice. Science. 1987 Mar 27;235(4796):1622–1628. doi: 10.1126/science.3029873. [DOI] [PubMed] [Google Scholar]
- Mitton K. P., Kamiya T., Tumminia S. J., Russell P. Cysteine protease activated by expression of HIV-1 protease in transgenic mice. MIP26 (aquaporin-0) cleavage and cataract formation in vivo and ex vivo. J Biol Chem. 1996 Dec 13;271(50):31803–31806. doi: 10.1074/jbc.271.50.31803. [DOI] [PubMed] [Google Scholar]
- Ogata H., Okubo Y., Akabane T. Phenotype i associated with congenital cataract in Japanese. Transfusion. 1979 Mar-Apr;19(2):166–168. doi: 10.1046/j.1537-2995.1979.19279160286.x. [DOI] [PubMed] [Google Scholar]
- Padma T., Ayyagari R., Murty J. S., Basti S., Fletcher T., Rao G. N., Kaiser-Kupfer M., Hejtmancik J. F. Autosomal dominant zonular cataract with sutural opacities localized to chromosome 17q11-12. Am J Hum Genet. 1995 Oct;57(4):840–845. [PMC free article] [PubMed] [Google Scholar]
- Perez-Castro A. V., Tran V. T., Nguyen-Huu M. C. Defective lens fiber differentiation and pancreatic tumorigenesis caused by ectopic expression of the cellular retinoic acid-binding protein I. Development. 1993 Oct;119(2):363–375. doi: 10.1242/dev.119.2.363. [DOI] [PubMed] [Google Scholar]
- RENWICK J. H., LAWLER S. D. PROBABLE LINKAGE BETWEEN A CONGENITAL CATARACT LOCUS AND THE DUFFY BLOOD GROUP LOCUS. Ann Hum Genet. 1963 Aug;27:67–84. doi: 10.1111/j.1469-1809.1963.tb00782.x. [DOI] [PubMed] [Google Scholar]
- Ray M. E., Wistow G., Su Y. A., Meltzer P. S., Trent J. M. AIM1, a novel non-lens member of the betagamma-crystallin superfamily, is associated with the control of tumorigenicity in human malignant melanoma. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3229–3234. doi: 10.1073/pnas.94.7.3229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Renwick J. H. Eyes on chromosomes. J Med Genet. 1970 Sep;7(3):239–243. doi: 10.1136/jmg.7.3.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodriguez I. R., Gonzalez P., Zigler J. S., Jr, Borrás T. A guinea-pig hereditary cataract contains a splice-site deletion in a crystallin gene. Biochim Biophys Acta. 1992 Oct 13;1180(1):44–52. doi: 10.1016/0925-4439(92)90025-i. [DOI] [PubMed] [Google Scholar]
- Rosmini F., Stazi M. A., Milton R. C., Sperduto R. D., Pasquini P., Maraini G. A dose-response effect between a sunlight index and age-related cataracts. Italian-American Cataract Study Group. Ann Epidemiol. 1994 Jul;4(4):266–270. doi: 10.1016/1047-2797(94)90081-7. [DOI] [PubMed] [Google Scholar]
- Santhiya S. T., Abd-alla S. M., Löster J., Graw J. Reduced levels of gamma-crystallin transcripts during embryonic development of murine Cat2nop mutant lenses. Graefes Arch Clin Exp Ophthalmol. 1995 Dec;233(12):795–800. doi: 10.1007/BF00184093. [DOI] [PubMed] [Google Scholar]
- Scott M. H., Hejtmancik J. F., Wozencraft L. A., Reuter L. M., Parks M. M., Kaiser-Kupfer M. I. Autosomal dominant congenital cataract. Interocular phenotypic variability. Ophthalmology. 1994 May;101(5):866–871. doi: 10.1016/s0161-6420(94)31246-2. [DOI] [PubMed] [Google Scholar]
- Shalini V. K., Luthra M., Srinivas L., Rao S. H., Basti S., Reddy M., Balasubramanian D. Oxidative damage to the eye lens caused by cigarette smoke and fuel smoke condensates. Indian J Biochem Biophys. 1994 Aug;31(4):261–266. [PubMed] [Google Scholar]
- Shiels A., Bassnett S. Mutations in the founder of the MIP gene family underlie cataract development in the mouse. Nat Genet. 1996 Feb;12(2):212–215. doi: 10.1038/ng0296-212. [DOI] [PubMed] [Google Scholar]
- Shiels A., Mackay D., Ionides A., Berry V., Moore A., Bhattacharya S. A missense mutation in the human connexin50 gene (GJA8) underlies autosomal dominant "zonular pulverulent" cataract, on chromosome 1q. Am J Hum Genet. 1998 Mar;62(3):526–532. doi: 10.1086/301762. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singh D. P., Guru S. C., Kikuchi T., Abe T., Shinohara T. Autoantibodies against beta-crystallins induce lens epithelial cell damage and cataract formation in mice. J Immunol. 1995 Jul 15;155(2):993–999. [PubMed] [Google Scholar]
- Spector A. Oxidative stress-induced cataract: mechanism of action. FASEB J. 1995 Sep;9(12):1173–1182. [PubMed] [Google Scholar]
- Stambolian D., Lewis R. A., Buetow K., Bond A., Nussbaum R. Nance-Horan syndrome: localization within the region Xp21.1-Xp22.3 by linkage analysis. Am J Hum Genet. 1990 Jul;47(1):13–19. [PMC free article] [PubMed] [Google Scholar]