Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1998 Aug;63(2):436–446. doi: 10.1086/301952

A novel Alu-like element rearranged in the dystrophin gene causes a splicing mutation in a family with X-linked dilated cardiomyopathy.

A Ferlini 1, N Galié 1, L Merlini 1, C Sewry 1, A Branzi 1, F Muntoni 1
PMCID: PMC1377294  PMID: 9683584

Abstract

We have identified and characterized a genomic sequence with some features typical of Alu-like mobile elements rearranged into the dystrophin gene in a family affected by X-linked dilated cardiomyopathy. The Alu-like sequence rearrangement occurred 2.4 kb downstream from the 5' end of intron 11 of the dystrophin gene. This rearrangement activated one cryptic splice site in intron 11 and produced an alternative transcript containing the Alu-like sequence and part of the adjacent intron 11, spliced between exons 11 and 12. Translation of this alternative transcript is truncated because of the numerous stop codons present in every frame of the Alu-like sequence. Only the mutant mRNA was detected in the heart muscle, but in the skeletal muscle it coexisted with the normal one. This result is supported by the immunocytochemical findings, which failed to detect dystrophin in the patient's cardiac muscle but showed expression of a reduced level of protein in the skeletal muscle. Comparative analysis of the Alu-like sequence showed high homology with other repeated-element-containing regions and with several expressed sequence tags. We suggest that this Alu-like sequence could represent a novel class of repetitive elements, reiterated and clustered with some known mobile elements and capable of transposition. Our report underlines the complexity of the pathogenic mechanism leading to X-linked dilated cardiomyopathy but suggests that differences in tissue-specific expression of dystrophin mutations may be a common feature in this condition.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adeniyi-Jones S., Zasloff M. Transcription, processing and nuclear transport of a B1 Alu RNA species complementary to an intron of the murine alpha-fetoprotein gene. Nature. 1985 Sep 5;317(6032):81–84. doi: 10.1038/317081a0. [DOI] [PubMed] [Google Scholar]
  2. Ahn A. H., Kunkel L. M. The structural and functional diversity of dystrophin. Nat Genet. 1993 Apr;3(4):283–291. doi: 10.1038/ng0493-283. [DOI] [PubMed] [Google Scholar]
  3. Beggs A. H., Koenig M., Boyce F. M., Kunkel L. M. Detection of 98% of DMD/BMD gene deletions by polymerase chain reaction. Hum Genet. 1990 Nov;86(1):45–48. doi: 10.1007/BF00205170. [DOI] [PubMed] [Google Scholar]
  4. Britten R. J., Baron W. F., Stout D. B., Davidson E. H. Sources and evolution of human Alu repeated sequences. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4770–4774. doi: 10.1073/pnas.85.13.4770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Britten R. J. DNA sequence insertion and evolutionary variation in gene regulation. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9374–9377. doi: 10.1073/pnas.93.18.9374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chamberlain J. S., Gibbs R. A., Ranier J. E., Nguyen P. N., Caskey C. T. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res. 1988 Dec 9;16(23):11141–11156. doi: 10.1093/nar/16.23.11141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Craig N. L. Unity in transposition reactions. Science. 1995 Oct 13;270(5234):253–254. doi: 10.1126/science.270.5234.253. [DOI] [PubMed] [Google Scholar]
  10. Deininger P. L., Batzer M. A., Hutchison C. A., 3rd, Edgell M. H. Master genes in mammalian repetitive DNA amplification. Trends Genet. 1992 Sep;8(9):307–311. doi: 10.1016/0168-9525(92)90262-3. [DOI] [PubMed] [Google Scholar]
  11. Durand J. B., Bachinski L. L., Bieling L. C., Czernuszewicz G. Z., Abchee A. B., Yu Q. T., Tapscott T., Hill R., Ifegwu J., Marian A. J. Localization of a gene responsible for familial dilated cardiomyopathy to chromosome 1q32. Circulation. 1995 Dec 15;92(12):3387–3389. doi: 10.1161/01.cir.92.12.3387. [DOI] [PubMed] [Google Scholar]
  12. Favor J., Morawetz C. Insertional mutations in mammals and mammalian cells. Mutat Res. 1992 Dec 1;284(1):53–74. doi: 10.1016/0027-5107(92)90024-v. [DOI] [PubMed] [Google Scholar]
  13. Ferlini A., Muntoni F. The 5' region of intron 11 of the dystrophin gene contains target sequences for mobile elements and three overlapping ORFs. Biochem Biophys Res Commun. 1998 Jan 14;242(2):401–406. doi: 10.1006/bbrc.1997.7976. [DOI] [PubMed] [Google Scholar]
  14. Hahn S. H., Krasnewich D., Brantly M., Kvittingen E. A., Gahl W. A. Heterozygosity for an exon 12 splicing mutation and a W234G missense mutation in an American child with chronic tyrosinemia type 1. Hum Mutat. 1995;6(1):66–73. doi: 10.1002/humu.1380060113. [DOI] [PubMed] [Google Scholar]
  15. Holmes S. E., Dombroski B. A., Krebs C. M., Boehm C. D., Kazazian H. H., Jr A new retrotransposable human L1 element from the LRE2 locus on chromosome 1q produces a chimaeric insertion. Nat Genet. 1994 Jun;7(2):143–148. doi: 10.1038/ng0694-143. [DOI] [PubMed] [Google Scholar]
  16. Janicic N., Pausova Z., Cole D. E., Hendy G. N. Insertion of an Alu sequence in the Ca(2+)-sensing receptor gene in familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Am J Hum Genet. 1995 Apr;56(4):880–886. [PMC free article] [PubMed] [Google Scholar]
  17. Kingsmore S. F., Giros B., Suh D., Bieniarz M., Caron M. G., Seldin M. F. Glycine receptor beta-subunit gene mutation in spastic mouse associated with LINE-1 element insertion. Nat Genet. 1994 Jun;7(2):136–141. doi: 10.1038/ng0694-136. [DOI] [PubMed] [Google Scholar]
  18. Kloeckener-Gruissem B., Freeling M. Transposon-induced promoter scrambling: a mechanism for the evolution of new alleles. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1836–1840. doi: 10.1073/pnas.92.6.1836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Knebelmann B., Forestier L., Drouot L., Quinones S., Chuet C., Benessy F., Saus J., Antignac C. Splice-mediated insertion of an Alu sequence in the COL4A3 mRNA causing autosomal recessive Alport syndrome. Hum Mol Genet. 1995 Apr;4(4):675–679. doi: 10.1093/hmg/4.4.675. [DOI] [PubMed] [Google Scholar]
  20. Krajinovic M., Pinamonti B., Sinagra G., Vatta M., Severini G. M., Milasin J., Falaschi A., Camerini F., Giacca M., Mestroni L. Linkage of familial dilated cardiomyopathy to chromosome 9. Heart Muscle Disease Study Group. Am J Hum Genet. 1995 Oct;57(4):846–852. [PMC free article] [PubMed] [Google Scholar]
  21. Kunkel L. M., Tantravahi U., Kurnit D. M., Eisenhard M., Bruns G. P., Latt S. A. Identification and isolation of transcribed human X chromosome DNA sequences. Nucleic Acids Res. 1983 Nov 25;11(22):7961–7979. doi: 10.1093/nar/11.22.7961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Li L., Bray P. F. Homologous recombination among three intragene Alu sequences causes an inversion-deletion resulting in the hereditary bleeding disorder Glanzmann thrombasthenia. Am J Hum Genet. 1993 Jul;53(1):140–149. [PMC free article] [PubMed] [Google Scholar]
  23. Makałowski W., Mitchell G. A., Labuda D. Alu sequences in the coding regions of mRNA: a source of protein variability. Trends Genet. 1994 Jun;10(6):188–193. doi: 10.1016/0168-9525(94)90254-2. [DOI] [PubMed] [Google Scholar]
  24. Manolio T. A., Baughman K. L., Rodeheffer R., Pearson T. A., Bristow J. D., Michels V. V., Abelmann W. H., Harlan W. R. Prevalence and etiology of idiopathic dilated cardiomyopathy (summary of a National Heart, Lung, and Blood Institute workshop. Am J Cardiol. 1992 Jun 1;69(17):1458–1466. doi: 10.1016/0002-9149(92)90901-a. [DOI] [PubMed] [Google Scholar]
  25. Mathias S. L., Scott A. F., Kazazian H. H., Jr, Boeke J. D., Gabriel A. Reverse transcriptase encoded by a human transposable element. Science. 1991 Dec 20;254(5039):1808–1810. doi: 10.1126/science.1722352. [DOI] [PubMed] [Google Scholar]
  26. McNaughton J. C., Marshall C. J., Broom J. E., Hughes G., Jones W. A., Stockwell P. A., Petersen G. B. Phylogenetic relationships among transposon-like elements in human and primate DNA. J Mol Evol. 1995 Feb;40(2):127–135. doi: 10.1007/BF00167108. [DOI] [PubMed] [Google Scholar]
  27. Milasin J., Muntoni F., Severini G. M., Bartoloni L., Vatta M., Krajinovic M., Mateddu A., Angelini C., Camerini F., Falaschi A. A point mutation in the 5' splice site of the dystrophin gene first intron responsible for X-linked dilated cardiomyopathy. Hum Mol Genet. 1996 Jan;5(1):73–79. doi: 10.1093/hmg/5.1.73. [DOI] [PubMed] [Google Scholar]
  28. Mitchell G. A., Labuda D., Fontaine G., Saudubray J. M., Bonnefont J. P., Lyonnet S., Brody L. C., Steel G., Obie C., Valle D. Splice-mediated insertion of an Alu sequence inactivates ornithine delta-aminotransferase: a role for Alu elements in human mutation. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):815–819. doi: 10.1073/pnas.88.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Monaco A. P., Bertelson C. J., Liechti-Gallati S., Moser H., Kunkel L. M. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics. 1988 Jan;2(1):90–95. doi: 10.1016/0888-7543(88)90113-9. [DOI] [PubMed] [Google Scholar]
  30. Muntoni F., Cau M., Ganau A., Congiu R., Arvedi G., Mateddu A., Marrosu M. G., Cianchetti C., Realdi G., Cao A. Brief report: deletion of the dystrophin muscle-promoter region associated with X-linked dilated cardiomyopathy. N Engl J Med. 1993 Sep 23;329(13):921–925. doi: 10.1056/NEJM199309233291304. [DOI] [PubMed] [Google Scholar]
  31. Muntoni F., Melis M. A., Ganau A., Dubowitz V. Transcription of the dystrophin gene in normal tissues and in skeletal muscle of a family with X-linked dilated cardiomyopathy. Am J Hum Genet. 1995 Jan;56(1):151–157. [PMC free article] [PubMed] [Google Scholar]
  32. Muratani K., Hada T., Yamamoto Y., Kaneko T., Shigeto Y., Ohue T., Furuyama J., Higashino K. Inactivation of the cholinesterase gene by Alu insertion: possible mechanism for human gene transposition. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11315–11319. doi: 10.1073/pnas.88.24.11315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Narita N., Nishio H., Kitoh Y., Ishikawa Y., Ishikawa Y., Minami R., Nakamura H., Matsuo M. Insertion of a 5' truncated L1 element into the 3' end of exon 44 of the dystrophin gene resulted in skipping of the exon during splicing in a case of Duchenne muscular dystrophy. J Clin Invest. 1993 May;91(5):1862–1867. doi: 10.1172/JCI116402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nelson K. K., Green M. R. Mechanism for cryptic splice site activation during pre-mRNA splicing. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6253–6257. doi: 10.1073/pnas.87.16.6253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Olson T. M., Keating M. T. Mapping a cardiomyopathy locus to chromosome 3p22-p25. J Clin Invest. 1996 Jan 15;97(2):528–532. doi: 10.1172/JCI118445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pizzuti A., Pieretti M., Fenwick R. G., Gibbs R. A., Caskey C. T. A transposon-like element in the deletion-prone region of the dystrophin gene. Genomics. 1992 Jul;13(3):594–600. doi: 10.1016/0888-7543(92)90129-g. [DOI] [PubMed] [Google Scholar]
  37. Richardson P., McKenna W., Bristow M., Maisch B., Mautner B., O'Connell J., Olsen E., Thiene G., Goodwin J., Gyarfas I. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies. Circulation. 1996 Mar 1;93(5):841–842. doi: 10.1161/01.cir.93.5.841. [DOI] [PubMed] [Google Scholar]
  38. Sewry C. A., Sansome A., Clerk A., Sherratt T. G., Hasson N., Rodillo E., Heckmatt J. Z., Strong P. N., Dubowitz V. Manifesting carriers of Xp21 muscular dystrophy; lack of correlation between dystrophin expression and clinical weakness. Neuromuscul Disord. 1993 Mar;3(2):141–148. doi: 10.1016/0960-8966(93)90006-6. [DOI] [PubMed] [Google Scholar]
  39. Sébillon P., Beldjord C., Kaplan J. C., Brody E., Marie J. A T to G mutation in the polypyrimidine tract of the second intron of the human beta-globin gene reduces in vitro splicing efficiency: evidence for an increased hnRNP C interaction. Nucleic Acids Res. 1995 Sep 11;23(17):3419–3425. doi: 10.1093/nar/23.17.3419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tanda S., Corces V. G. Retrotransposon-induced overexpression of a homeobox gene causes defects in eye morphogenesis in Drosophila. EMBO J. 1991 Feb;10(2):407–417. doi: 10.1002/j.1460-2075.1991.tb07962.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Towbin J. A., Hejtmancik J. F., Brink P., Gelb B., Zhu X. M., Chamberlain J. S., McCabe E. R., Swift M. X-linked dilated cardiomyopathy. Molecular genetic evidence of linkage to the Duchenne muscular dystrophy (dystrophin) gene at the Xp21 locus. Circulation. 1993 Jun;87(6):1854–1865. doi: 10.1161/01.cir.87.6.1854. [DOI] [PubMed] [Google Scholar]
  42. Vidaud D., Vidaud M., Bahnak B. R., Siguret V., Gispert Sanchez S., Laurian Y., Meyer D., Goossens M., Lavergne J. M. Haemophilia B due to a de novo insertion of a human-specific Alu subfamily member within the coding region of the factor IX gene. Eur J Hum Genet. 1993;1(1):30–36. doi: 10.1159/000472385. [DOI] [PubMed] [Google Scholar]
  43. Wallace M. R., Andersen L. B., Saulino A. M., Gregory P. E., Glover T. W., Collins F. S. A de novo Alu insertion results in neurofibromatosis type 1. Nature. 1991 Oct 31;353(6347):864–866. doi: 10.1038/353864a0. [DOI] [PubMed] [Google Scholar]
  44. Weiner A. M., Deininger P. L., Efstratiadis A. Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem. 1986;55:631–661. doi: 10.1146/annurev.bi.55.070186.003215. [DOI] [PubMed] [Google Scholar]
  45. Yoshida K., Ikeda S., Nakamura A., Kagoshima M., Takeda S., Shoji S., Yanagisawa N. Molecular analysis of the Duchenne muscular dystrophy gene in patients with Becker muscular dystrophy presenting with dilated cardiomyopathy. Muscle Nerve. 1993 Nov;16(11):1161–1166. doi: 10.1002/mus.880161104. [DOI] [PubMed] [Google Scholar]
  46. van der Kooi A. J., van Meegen M., Ledderhof T. M., McNally E. M., de Visser M., Bolhuis P. A. Genetic localization of a newly recognized autosomal dominant limb-girdle muscular dystrophy with cardiac involvement (LGMD1B) to chromosome 1q11-21. Am J Hum Genet. 1997 Apr;60(4):891–895. [PMC free article] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES