Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1998 Oct;63(4):1086–1094. doi: 10.1086/302053

Familial eosinophilia maps to the cytokine gene cluster on human chromosomal region 5q31-q33.

J D Rioux 1, V A Stone 1, M J Daly 1, M Cargill 1, T Green 1, H Nguyen 1, T Nutman 1, P A Zimmerman 1, M A Tucker 1, T Hudson 1, A M Goldstein 1, E Lander 1, A Y Lin 1
PMCID: PMC1377485  PMID: 9758611

Abstract

Familial eosinophilia (FE) is an autosomal dominant disorder characterized by peripheral hypereosinophilia of unidentifiable cause with or without other organ involvement. To localize the gene for FE, we performed a genomewide search in a large U.S. kindred, using 312 different polymorphic markers. Seventeen affected subjects, 28 unaffected bloodline relatives, and 8 spouses were genotyped. The initial linkage results from the genome scan provided evidence for linkage on chromosome 5q31-q33. Additional genotyping of genetic markers located in this specific region demonstrated significant evidence that the FE locus is situated between the chromosome 5q markers D5S642 and D5S816 (multipoint LOD score of 6.49). Notably, this region contains the cytokine gene cluster, which includes three genes-namely, those for interleukin (IL)-3, IL-5, and granulocyte/macrophage colony-stimulating factor (GM-CSF)-whose products play important roles in the development and proliferation of eosinophils. These three cytokine genes were screened for potential disease-specific mutations by resequencing of a subgroup of individuals from the present kindred. No functional sequence polymorphisms were found within the promoter, the exons, or the introns of any of these genes or within the IL-3/GM-CSF enhancer, suggesting that the primary defect in FE is not caused by a mutation in any one of these genes but, rather, is caused by another gene in the area.

Full Text

The Full Text of this article is available as a PDF (421.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baranger L., Szapiro N., Gardais J., Hillion J., Derre J., Francois S., Blanchet O., Boasson M., Berger R. Translocation t(5;12)(q31-q33;p12-p13): a non-random translocation associated with a myeloid disorder with eosinophilia. Br J Haematol. 1994 Oct;88(2):343–347. doi: 10.1111/j.1365-2141.1994.tb05029.x. [DOI] [PubMed] [Google Scholar]
  2. Baumgarten E., Wegner R. D., Fengler R., Ludwig W. D., Schulte-Overberg U., Domeyer C., Schürmann J., Henze G. Calla-positive acute leukaemia with t(5q;14q) translocation and hypereosinophilia--a unique entity? Acta Haematol. 1989;82(2):85–90. doi: 10.1159/000205289. [DOI] [PubMed] [Google Scholar]
  3. Berkowicz M., Rosner E., Rechavi G., Mamon Z., Neuman Y., Ben-Bassat I., Ramot B. Atypical chronic myelomonocytic leukemia with eosinophilia and translocation (5;12). A new association. Cancer Genet Cytogenet. 1991 Feb;51(2):277–278. doi: 10.1016/0165-4608(91)90142-h. [DOI] [PubMed] [Google Scholar]
  4. Broide D. H., Paine M. M., Firestein G. S. Eosinophils express interleukin 5 and granulocyte macrophage-colony-stimulating factor mRNA at sites of allergic inflammation in asthmatics. J Clin Invest. 1992 Oct;90(4):1414–1424. doi: 10.1172/JCI116008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chihara J., Plumas J., Gruart V., Tavernier J., Prin L., Capron A., Capron M. Characterization of a receptor for interleukin 5 on human eosinophils: variable expression and induction by granulocyte/macrophage colony-stimulating factor. J Exp Med. 1990 Nov 1;172(5):1347–1351. doi: 10.1084/jem.172.5.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chusid M. J., Dale D. C., West B. C., Wolff S. M. The hypereosinophilic syndrome: analysis of fourteen cases with review of the literature. Medicine (Baltimore) 1975 Jan;54(1):1–27. [PubMed] [Google Scholar]
  7. Cockerill P. N., Osborne C. S., Bert A. G., Grotto R. J. Regulation of GM-CSF gene transcription by core-binding factor. Cell Growth Differ. 1996 Jul;7(7):917–922. [PubMed] [Google Scholar]
  8. Cockerill P. N., Shannon M. F., Bert A. G., Ryan G. R., Vadas M. A. The granulocyte-macrophage colony-stimulating factor/interleukin 3 locus is regulated by an inducible cyclosporin A-sensitive enhancer. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2466–2470. doi: 10.1073/pnas.90.6.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cousins D. J., Staynov D. Z., Lee T. H. Regulation of interleukin-5 and granulocyte-macrophage colony-stimulating factor expression. Am J Respir Crit Care Med. 1994 Nov;150(5 Pt 2):S50–S53. doi: 10.1164/ajrccm/150.5_Pt_2.S50. [DOI] [PubMed] [Google Scholar]
  10. Dent L. A., Strath M., Mellor A. L., Sanderson C. J. Eosinophilia in transgenic mice expressing interleukin 5. J Exp Med. 1990 Nov 1;172(5):1425–1431. doi: 10.1084/jem.172.5.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Desreumaux P., Janin A., Colombel J. F., Prin L., Plumas J., Emilie D., Torpier G., Capron A., Capron M. Interleukin 5 messenger RNA expression by eosinophils in the intestinal mucosa of patients with coeliac disease. J Exp Med. 1992 Jan 1;175(1):293–296. doi: 10.1084/jem.175.1.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Desreumaux P., Janin A., Dubucquoi S., Copin M. C., Torpier G., Capron A., Capron M., Prin L. Synthesis of interleukin-5 by activated eosinophils in patients with eosinophilic heart diseases. Blood. 1993 Sep 1;82(5):1553–1560. [PubMed] [Google Scholar]
  13. Dubovsky J., Sheffield V. C., Duyk G. M., Weber J. L. Sets of short tandem repeat polymorphisms for efficient linkage screening of the human genome. Hum Mol Genet. 1995 Mar;4(3):449–452. doi: 10.1093/hmg/4.3.449. [DOI] [PubMed] [Google Scholar]
  14. Engeland K., Andrews N. C., Mathey-Prevot B. Multiple proteins interact with the nuclear inhibitory protein repressor element in the human interleukin-3 promoter. J Biol Chem. 1995 Oct 13;270(41):24572–24579. doi: 10.1074/jbc.270.41.24572. [DOI] [PubMed] [Google Scholar]
  15. Fauci A. S., Harley J. B., Roberts W. C., Ferrans V. J., Gralnick H. R., Bjornson B. H. NIH conference. The idiopathic hypereosinophilic syndrome. Clinical, pathophysiologic, and therapeutic considerations. Ann Intern Med. 1982 Jul;97(1):78–92. doi: 10.7326/0003-4819-97-1-78. [DOI] [PubMed] [Google Scholar]
  16. Fermand J. P., Mitjavila M. T., Le Couedic J. P., Tsapis A., Berger R., Modigliani R., Seligmann M., Brouet J. C., Vainchenker W. Role of granulocyte-macrophage colony-stimulating factor, interleukin-3 and interleukin-5 in the eosinophilia associated with T cell lymphoma. Br J Haematol. 1993 Mar;83(3):359–364. doi: 10.1111/j.1365-2141.1993.tb04657.x. [DOI] [PubMed] [Google Scholar]
  17. Goh K. O., Ho F. S., Tso S. C., Ma J. Is hypereosinophilic syndrome a malignant disease? Cancer. 1985 May 15;55(10):2395–2399. doi: 10.1002/1097-0142(19850515)55:10<2395::aid-cncr2820551016>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
  18. Gruart-Gouilleux V., Engels P., Sullivan M. Characterization of the human interleukin-5 gene promoter: involvement of octamer binding sites in the gene promoter activity. Eur J Immunol. 1995 May;25(5):1431–1435. doi: 10.1002/eji.1830250544. [DOI] [PubMed] [Google Scholar]
  19. Hardy W. R., Anderson R. E. The hypereosinophilic syndromes. Ann Intern Med. 1968 Jun;68(6):1220–1229. doi: 10.7326/0003-4819-68-6-1220. [DOI] [PubMed] [Google Scholar]
  20. Hawkins T. L., O'Connor-Morin T., Roy A., Santillan C. DNA purification and isolation using a solid-phase. Nucleic Acids Res. 1994 Oct 25;22(21):4543–4544. doi: 10.1093/nar/22.21.4543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hogan T. F., Koss W., Murgo A. J., Amato R. S., Fontana J. A., VanScoy F. L. Acute lymphoblastic leukemia with chromosomal 5;14 translocation and hypereosinophilia: case report and literature review. J Clin Oncol. 1987 Mar;5(3):382–390. doi: 10.1200/JCO.1987.5.3.382. [DOI] [PubMed] [Google Scholar]
  22. Jani K., Kempski H. M., Reeves B. R. A case of myelodysplasia with eosinophilia having a translocation t(5;12) (q31;q13) restricted to myeloid cells but not involving eosinophils. Br J Haematol. 1994 May;87(1):57–60. doi: 10.1111/j.1365-2141.1994.tb04870.x. [DOI] [PubMed] [Google Scholar]
  23. Karlen S., D'Ercole M., Sanderson C. J. Two pathways can activate the interleukin-5 gene and induce binding to the conserved lymphokine element 0. Blood. 1996 Jul 1;88(1):211–221. [PubMed] [Google Scholar]
  24. Karlen S., Mordvinov V. A., Sanderson C. J. How is expression of the interleukin-5 gene regulated? Immunol Cell Biol. 1996 Apr;74(2):218–223. doi: 10.1038/icb.1996.31. [DOI] [PubMed] [Google Scholar]
  25. Kita H., Ohnishi T., Okubo Y., Weiler D., Abrams J. S., Gleich G. J. Granulocyte/macrophage colony-stimulating factor and interleukin 3 release from human peripheral blood eosinophils and neutrophils. J Exp Med. 1991 Sep 1;174(3):745–748. doi: 10.1084/jem.174.3.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kruglyak L., Daly M. J., Reeve-Daly M. P., Lander E. S. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet. 1996 Jun;58(6):1347–1363. [PMC free article] [PubMed] [Google Scholar]
  27. Lathrop G. M., Lalouel J. M., Julier C., Ott J. Strategies for multilocus linkage analysis in humans. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3443–3446. doi: 10.1073/pnas.81.11.3443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lee N. A., McGarry M. P., Larson K. A., Horton M. A., Kristensen A. B., Lee J. J. Expression of IL-5 in thymocytes/T cells leads to the development of a massive eosinophilia, extramedullary eosinophilopoiesis, and unique histopathologies. J Immunol. 1997 Feb 1;158(3):1332–1344. [PubMed] [Google Scholar]
  29. Lin A. Y., Nutman T. B., Kaslow D., Mulvihill J. J., Fontaine L., White B. J., Knutsen T., Theil K. S., Raghuprasad P. K., Goldstein A. M. Familial eosinophilia: clinical and laboratory results on a U.S. kindred. Am J Med Genet. 1998 Mar 19;76(3):229–237. [PubMed] [Google Scholar]
  30. Lopez A. F., Eglinton J. M., Gillis D., Park L. S., Clark S., Vadas M. A. Reciprocal inhibition of binding between interleukin 3 and granulocyte-macrophage colony-stimulating factor to human eosinophils. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7022–7026. doi: 10.1073/pnas.86.18.7022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Matsushima T., Murakami H., Tsuchiya J. Myelodysplastic syndrome with bone marrow eosinophilia: clinical and cytogenetic features. Leuk Lymphoma. 1994 Nov;15(5-6):491–497. doi: 10.3109/10428199409049753. [DOI] [PubMed] [Google Scholar]
  32. Miyatake S., Otsuka T., Yokota T., Lee F., Arai K. Structure of the chromosomal gene for granulocyte-macrophage colony stimulating factor: comparison of the mouse and human genes. EMBO J. 1985 Oct;4(10):2561–2568. doi: 10.1002/j.1460-2075.1985.tb03971.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Moqbel R., Hamid Q., Ying S., Barkans J., Hartnell A., Tsicopoulos A., Wardlaw A. J., Kay A. B. Expression of mRNA and immunoreactivity for the granulocyte/macrophage colony-stimulating factor in activated human eosinophils. J Exp Med. 1991 Sep 1;174(3):749–752. doi: 10.1084/jem.174.3.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Murray J. C., Buetow K. H., Weber J. L., Ludwigsen S., Scherpbier-Heddema T., Manion F., Quillen J., Sheffield V. C., Sunden S., Duyk G. M. A comprehensive human linkage map with centimorgan density. Cooperative Human Linkage Center (CHLC). Science. 1994 Sep 30;265(5181):2049–2054. doi: 10.1126/science.8091227. [DOI] [PubMed] [Google Scholar]
  35. NAIMAN J. L., OSKI F. A., ALLEN F. H., Jr, DIAMOND L. K. HEREDITARY EOSINOPHILIA: REPORT OF A FAMILY AND REVIEW OF THE LITERATURE. Am J Hum Genet. 1964 Jun;16:195–203. [PMC free article] [PubMed] [Google Scholar]
  36. Nimer S., Zhang J., Avraham H., Miyazaki Y. Transcriptional regulation of interleukin-3 expression in megakaryocytes. Blood. 1996 Jul 1;88(1):66–74. [PubMed] [Google Scholar]
  37. O'Connell J. R., Weeks D. E. The VITESSE algorithm for rapid exact multilocus linkage analysis via genotype set-recoding and fuzzy inheritance. Nat Genet. 1995 Dec;11(4):402–408. doi: 10.1038/ng1295-402. [DOI] [PubMed] [Google Scholar]
  38. Owen W. F., Jr, Rothenberg M. E., Silberstein D. S., Gasson J. C., Stevens R. L., Austen K. F., Soberman R. J. Regulation of human eosinophil viability, density, and function by granulocyte/macrophage colony-stimulating factor in the presence of 3T3 fibroblasts. J Exp Med. 1987 Jul 1;166(1):129–141. doi: 10.1084/jem.166.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Owen W. F., Rothenberg M. E., Petersen J., Weller P. F., Silberstein D., Sheffer A. L., Stevens R. L., Soberman R. J., Austen K. F. Interleukin 5 and phenotypically altered eosinophils in the blood of patients with the idiopathic hypereosinophilic syndrome. J Exp Med. 1989 Jul 1;170(1):343–348. doi: 10.1084/jem.170.1.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Parrillo J. E., Fauci A. S., Wolff S. M. Therapy of the hypereosinophilic syndrome. Ann Intern Med. 1978 Aug;89(2):167–172. doi: 10.7326/0003-4819-89-2-167. [DOI] [PubMed] [Google Scholar]
  41. Rothenberg M. E., Owen W. F., Jr, Silberstein D. S., Woods J., Soberman R. J., Austen K. F., Stevens R. L. Human eosinophils have prolonged survival, enhanced functional properties, and become hypodense when exposed to human interleukin 3. J Clin Invest. 1988 Jun;81(6):1986–1992. doi: 10.1172/JCI113547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rothenberg M. E., Petersen J., Stevens R. L., Silberstein D. S., McKenzie D. T., Austen K. F., Owen W. F., Jr IL-5-dependent conversion of normodense human eosinophils to the hypodense phenotype uses 3T3 fibroblasts for enhanced viability, accelerated hypodensity, and sustained antibody-dependent cytotoxicity. J Immunol. 1989 Oct 1;143(7):2311–2316. [PubMed] [Google Scholar]
  43. Sanderson C. J. Interleukin-5, eosinophils, and disease. Blood. 1992 Jun 15;79(12):3101–3109. [PubMed] [Google Scholar]
  44. Schrezenmeier H., Thomé S. D., Tewald F., Fleischer B., Raghavachar A. Interleukin-5 is the predominant eosinophilopoietin produced by cloned T lymphocytes in hypereosinophilic syndrome. Exp Hematol. 1993 Feb;21(2):358–365. [PubMed] [Google Scholar]
  45. Schuler G. D., Boguski M. S., Stewart E. A., Stein L. D., Gyapay G., Rice K., White R. E., Rodriguez-Tomé P., Aggarwal A., Bajorek E. A gene map of the human genome. Science. 1996 Oct 25;274(5287):540–546. [PubMed] [Google Scholar]
  46. Staden R. The Staden sequence analysis package. Mol Biotechnol. 1996 Jun;5(3):233–241. doi: 10.1007/BF02900361. [DOI] [PubMed] [Google Scholar]
  47. Staynov D. Z., Cousins D. J., Lee T. H. A regulatory element in the promoter of the human granulocyte-macrophage colony-stimulating factor gene that has related sequences in other T-cell-expressed cytokine genes. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3606–3610. doi: 10.1073/pnas.92.8.3606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Stranick K. S., Zambas D. N., Uss A. S., Egan R. W., Billah M. M., Umland S. P. Identification of transcription factor binding sites important in the regulation of the human interleukin-5 gene. J Biol Chem. 1997 Jun 27;272(26):16453–16465. doi: 10.1074/jbc.272.26.16453. [DOI] [PubMed] [Google Scholar]
  49. Taylor D. S., Laubach J. P., Nathan D. G., Mathey-Prevot B. Cooperation between core binding factor and adjacent promoter elements contributes to the tissue-specific expression of interleukin-3. J Biol Chem. 1996 Jun 14;271(24):14020–14027. doi: 10.1074/jbc.271.24.14020. [DOI] [PubMed] [Google Scholar]
  50. Vaux D. L., Lalor P. A., Cory S., Johnson G. R. In vivo expression of interleukin 5 induces an eosinophilia and expanded Ly-1B lineage populations. Int Immunol. 1990;2(10):965–971. doi: 10.1093/intimm/2.10.965. [DOI] [PubMed] [Google Scholar]
  51. Wang C. Y., Bassuk A. G., Boise L. H., Thompson C. B., Bravo R., Leiden J. M. Activation of the granulocyte-macrophage colony-stimulating factor promoter in T cells requires cooperative binding of Elf-1 and AP-1 transcription factors. Mol Cell Biol. 1994 Feb;14(2):1153–1159. doi: 10.1128/mcb.14.2.1153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Weller P. F. The immunobiology of eosinophils. N Engl J Med. 1991 Apr 18;324(16):1110–1118. doi: 10.1056/NEJM199104183241607. [DOI] [PubMed] [Google Scholar]
  53. Yamagata T., Nishida J., Sakai R., Tanaka T., Honda H., Hirano N., Mano H., Yazaki Y., Hirai H. Of the GATA-binding proteins, only GATA-4 selectively regulates the human interleukin-5 gene promoter in interleukin-5-producing cells which express multiple GATA-binding proteins. Mol Cell Biol. 1995 Jul;15(7):3830–3839. doi: 10.1128/mcb.15.7.3830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Yates P., Potter M. N. Eosinophilic leukaemia with an abnormality of 5q31, the site of the IL-5 gene. Clin Lab Haematol. 1991;13(2):211–215. doi: 10.1111/j.1365-2257.1991.tb00271.x. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES