Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1999 Feb;64(2):538–546. doi: 10.1086/302246

Limb mammary syndrome: a new genetic disorder with mammary hypoplasia, ectrodactyly, and other Hand/Foot anomalies maps to human chromosome 3q27.

H van Bokhoven 1, M Jung 1, A P Smits 1, S van Beersum 1, F Rüschendorf 1, M van Steensel 1, M Veenstra 1, J H Tuerlings 1, E C Mariman 1, H G Brunner 1, T F Wienker 1, A Reis 1, H H Ropers 1, B C Hamel 1
PMCID: PMC1377763  PMID: 9973291

Abstract

We report on a large Dutch family with a syndrome characterized by severe hand and/or foot anomalies, and hypoplasia/aplasia of the mammary gland and nipple. Less frequent findings include lacrimal-duct atresia, nail dysplasia, hypohydrosis, hypodontia, and cleft palate with or without bifid uvula. This combination of symptoms has not been reported previously, although there is overlap with the ulnar mammary syndrome (UMS) and with ectrodactyly, ectodermal dysplasia, and clefting syndrome. Allelism with UMS and other related syndromes was excluded by linkage studies with markers from the relevant chromosomal regions. A genomewide screening with polymorphic markers allowed the localization of the genetic defect to the subtelomeric region of chromosome 3q. Haplotype analysis reduced the critical region to a 3-cM interval of chromosome 3q27. This chromosomal segment has not been implicated previously in disorders with defective development of limbs and/or mammary tissue. Therefore, we propose to call this apparently new disorder "limb mammary syndrome" (LMS). The SOX2 gene at 3q27 might be considered an excellent candidate gene for LMS because the corresponding protein stimulates expression of FGF4, an important signaling molecule during limb outgrowth and development. However, no mutations were found in the SOX2 open reading frame, thus excluding its involvement in LMS.

Full Text

The Full Text of this article is available as a PDF (433.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bamshad M., Lin R. C., Law D. J., Watkins W. C., Krakowiak P. A., Moore M. E., Franceschini P., Lala R., Holmes L. B., Gebuhr T. C. Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome. Nat Genet. 1997 Jul;16(3):311–315. doi: 10.1038/ng0797-311. [DOI] [PubMed] [Google Scholar]
  2. Bamshad M., Root S., Carey J. C. Clinical analysis of a large kindred with the Pallister ulnar-mammary syndrome. Am J Med Genet. 1996 Nov 11;65(4):325–331. doi: 10.1002/(SICI)1096-8628(19961111)65:4<325::AID-AJMG15>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  3. Basson C. T., Bachinsky D. R., Lin R. C., Levi T., Elkins J. A., Soults J., Grayzel D., Kroumpouzou E., Traill T. A., Leblanc-Straceski J. Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet. 1997 Jan;15(1):30–35. doi: 10.1038/ng0197-30. [DOI] [PubMed] [Google Scholar]
  4. Buss P. W., Hughes H. E., Clarke A. Twenty-four cases of the EEC syndrome: clinical presentation and management. J Med Genet. 1995 Sep;32(9):716–723. doi: 10.1136/jmg.32.9.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen H., Lun Y., Ovchinnikov D., Kokubo H., Oberg K. C., Pepicelli C. V., Gan L., Lee B., Johnson R. L. Limb and kidney defects in Lmx1b mutant mice suggest an involvement of LMX1B in human nail patella syndrome. Nat Genet. 1998 May;19(1):51–55. doi: 10.1038/ng0598-51. [DOI] [PubMed] [Google Scholar]
  6. Cohn M. J., Tickle C. Limbs: a model for pattern formation within the vertebrate body plan. Trends Genet. 1996 Jul;12(7):253–257. doi: 10.1016/0168-9525(96)10030-5. [DOI] [PubMed] [Google Scholar]
  7. Coleman-Krnacik S., Rosen J. M. Differential temporal and spatial gene expression of fibroblast growth factor family members during mouse mammary gland development. Mol Endocrinol. 1994 Feb;8(2):218–229. doi: 10.1210/mend.8.2.8170478. [DOI] [PubMed] [Google Scholar]
  8. Crossley P. H., Minowada G., MacArthur C. A., Martin G. R. Roles for FGF8 in the induction, initiation, and maintenance of chick limb development. Cell. 1996 Jan 12;84(1):127–136. doi: 10.1016/s0092-8674(00)80999-x. [DOI] [PubMed] [Google Scholar]
  9. Dib C., Fauré S., Fizames C., Samson D., Drouot N., Vignal A., Millasseau P., Marc S., Hazan J., Seboun E. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature. 1996 Mar 14;380(6570):152–154. doi: 10.1038/380152a0. [DOI] [PubMed] [Google Scholar]
  10. Foster J. W., Dominguez-Steglich M. A., Guioli S., Kwok C., Weller P. A., Stevanović M., Weissenbach J., Mansour S., Young I. D., Goodfellow P. N. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature. 1994 Dec 8;372(6506):525–530. doi: 10.1038/372525a0. [DOI] [PubMed] [Google Scholar]
  11. Gemmill R. M., Chumakov I., Scott P., Waggoner B., Rigault P., Cypser J., Chen Q., Weissenbach J., Gardiner K., Wang H. A second-generation YAC contig map of human chromosome 3. Nature. 1995 Sep 28;377(6547 Suppl):299–319. doi: 10.1038/377299a0. [DOI] [PubMed] [Google Scholar]
  12. Kang S., Graham J. M., Jr, Olney A. H., Biesecker L. G. GLI3 frameshift mutations cause autosomal dominant Pallister-Hall syndrome. Nat Genet. 1997 Mar;15(3):266–268. doi: 10.1038/ng0397-266. [DOI] [PubMed] [Google Scholar]
  13. Klingensmith J., Nusse R., Perrimon N. The Drosophila segment polarity gene dishevelled encodes a novel protein required for response to the wingless signal. Genes Dev. 1994 Jan;8(1):118–130. doi: 10.1101/gad.8.1.118. [DOI] [PubMed] [Google Scholar]
  14. Kremer H., Pinckers A., van den Helm B., Deutman A. F., Ropers H. H., Mariman E. C. Localization of the gene for dominant cystoid macular dystrophy on chromosome 7p. Hum Mol Genet. 1994 Feb;3(2):299–302. doi: 10.1093/hmg/3.2.299. [DOI] [PubMed] [Google Scholar]
  15. Lathrop G. M., Lalouel J. M. Easy calculations of lod scores and genetic risks on small computers. Am J Hum Genet. 1984 Mar;36(2):460–465. [PMC free article] [PubMed] [Google Scholar]
  16. Laufer E., Nelson C. E., Johnson R. L., Morgan B. A., Tabin C. Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell. 1994 Dec 16;79(6):993–1003. doi: 10.1016/0092-8674(94)90030-2. [DOI] [PubMed] [Google Scholar]
  17. Li Q. Y., Newbury-Ecob R. A., Terrett J. A., Wilson D. I., Curtis A. R., Yi C. H., Gebuhr T., Bullen P. J., Robson S. C., Strachan T. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet. 1997 Jan;15(1):21–29. doi: 10.1038/ng0197-21. [DOI] [PubMed] [Google Scholar]
  18. Loomis C. A., Harris E., Michaud J., Wurst W., Hanks M., Joyner A. L. The mouse Engrailed-1 gene and ventral limb patterning. Nature. 1996 Jul 25;382(6589):360–363. doi: 10.1038/382360a0. [DOI] [PubMed] [Google Scholar]
  19. Maas S. M., de Jong T. P., Buss P., Hennekam R. C. EEC syndrome and genitourinary anomalies: an update. Am J Med Genet. 1996 Jun 14;63(3):472–478. doi: 10.1002/(SICI)1096-8628(19960614)63:3<472::AID-AJMG11>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  20. Miller S. A., Dykes D. D., Polesky H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988 Feb 11;16(3):1215–1215. doi: 10.1093/nar/16.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mortlock D. P., Innis J. W. Mutation of HOXA13 in hand-foot-genital syndrome. Nat Genet. 1997 Feb;15(2):179–180. doi: 10.1038/ng0297-179. [DOI] [PubMed] [Google Scholar]
  22. Muragaki Y., Mariman E. C., van Beersum S. E., Perälä M., van Mourik J. B., Warman M. L., Olsen B. R., Hamel B. C. A mutation in the gene encoding the alpha 2 chain of the fibril-associated collagen IX, COL9A2, causes multiple epiphyseal dysplasia (EDM2). Nat Genet. 1996 Jan;12(1):103–105. doi: 10.1038/ng0196-103. [DOI] [PubMed] [Google Scholar]
  23. Muragaki Y., Mundlos S., Upton J., Olsen B. R. Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13. Science. 1996 Apr 26;272(5261):548–551. doi: 10.1126/science.272.5261.548. [DOI] [PubMed] [Google Scholar]
  24. Niswander L., Jeffrey S., Martin G. R., Tickle C. A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature. 1994 Oct 13;371(6498):609–612. doi: 10.1038/371609a0. [DOI] [PubMed] [Google Scholar]
  25. Niswander L. Limb mutants: what can they tell us about normal limb development? Curr Opin Genet Dev. 1997 Aug;7(4):530–536. doi: 10.1016/s0959-437x(97)80082-2. [DOI] [PubMed] [Google Scholar]
  26. Niswander L., Tickle C., Vogel A., Booth I., Martin G. R. FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell. 1993 Nov 5;75(3):579–587. doi: 10.1016/0092-8674(93)90391-3. [DOI] [PubMed] [Google Scholar]
  27. O'Quinn J. R., Hennekam R. C., Jorde L. B., Bamshad M. Syndromic ectrodactyly with severe limb, ectodermal, urogenital, and palatal defects maps to chromosome 19. Am J Hum Genet. 1998 Jan;62(1):130–135. doi: 10.1086/301687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Opitz J. M., Frias J. L., Cohen M. M., Jr The ECP syndrome, another autosomal dominant cause of monodactylous ectrodactyly. Eur J Pediatr. 1980 May;133(3):217–220. doi: 10.1007/BF00496079. [DOI] [PubMed] [Google Scholar]
  29. Orita M., Iwahana H., Kanazawa H., Hayashi K., Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2766–2770. doi: 10.1073/pnas.86.8.2766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Parr B. A., McMahon A. P. Dorsalizing signal Wnt-7a required for normal polarity of D-V and A-P axes of mouse limb. Nature. 1995 Mar 23;374(6520):350–353. doi: 10.1038/374350a0. [DOI] [PubMed] [Google Scholar]
  31. Pizzuti A., Amati F., Calabrese G., Mari A., Colosimo A., Silani V., Giardino L., Ratti A., Penso D., Calzà L. cDNA characterization and chromosomal mapping of two human homologues of the Drosophila dishevelled polarity gene. Hum Mol Genet. 1996 Jul;5(7):953–958. doi: 10.1093/hmg/5.7.953. [DOI] [PubMed] [Google Scholar]
  32. Polinkovsky A., Robin N. H., Thomas J. T., Irons M., Lynn A., Goodman F. R., Reardon W., Kant S. G., Brunner H. G., van der Burgt I. Mutations in CDMP1 cause autosomal dominant brachydactyly type C. Nat Genet. 1997 Sep;17(1):18–19. doi: 10.1038/ng0997-18. [DOI] [PubMed] [Google Scholar]
  33. Propping P., Zerres K. ADULT-syndrome: an autosomal-dominant disorder with pigment anomalies, ectrodactyly, nail dysplasia, and hypodontia. Am J Med Genet. 1993 Mar 1;45(5):642–648. doi: 10.1002/ajmg.1320450525. [DOI] [PubMed] [Google Scholar]
  34. Radhakrishna U., Wild A., Grzeschik K. H., Antonarakis S. E. Mutation in GLI3 in postaxial polydactyly type A. Nat Genet. 1997 Nov;17(3):269–271. doi: 10.1038/ng1197-269. [DOI] [PubMed] [Google Scholar]
  35. Riddle R. D., Johnson R. L., Laufer E., Tabin C. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell. 1993 Dec 31;75(7):1401–1416. doi: 10.1016/0092-8674(93)90626-2. [DOI] [PubMed] [Google Scholar]
  36. Rodini E. S., Richieri-Costa A. EEC syndrome: report on 20 new patients, clinical and genetic considerations. Am J Med Genet. 1990 Sep;37(1):42–53. doi: 10.1002/ajmg.1320370112. [DOI] [PubMed] [Google Scholar]
  37. Roelfsema N. M., Cobben J. M. The EEC syndrome: a literature study. Clin Dysmorphol. 1996 Apr;5(2):115–127. doi: 10.1097/00019605-199604000-00003. [DOI] [PubMed] [Google Scholar]
  38. Saar K., Chrzanowska K. H., Stumm M., Jung M., Nürnberg G., Wienker T. F., Seemanová E., Wegner R. D., Reis A., Sperling K. The gene for the ataxia-telangiectasia variant, Nijmegen breakage syndrome, maps to a 1-cM interval on chromosome 8q21. Am J Hum Genet. 1997 Mar;60(3):605–610. [PMC free article] [PubMed] [Google Scholar]
  39. Scherer S. W., Poorkaj P., Massa H., Soder S., Allen T., Nunes M., Geshuri D., Wong E., Belloni E., Little S. Physical mapping of the split hand/split foot locus on chromosome 7 and implication in syndromic ectrodactyly. Hum Mol Genet. 1994 Aug;3(8):1345–1354. doi: 10.1093/hmg/3.8.1345. [DOI] [PubMed] [Google Scholar]
  40. Stevanovic M., Zuffardi O., Collignon J., Lovell-Badge R., Goodfellow P. The cDNA sequence and chromosomal location of the human SOX2 gene. Mamm Genome. 1994 Oct;5(10):640–642. doi: 10.1007/BF00411460. [DOI] [PubMed] [Google Scholar]
  41. Stoll C., Duboule D., Holmes L. B., Spranger J. Classification of limb defects. Am J Med Genet. 1998 Jun 5;77(5):439–441. [PubMed] [Google Scholar]
  42. Thomas J. T., Kilpatrick M. W., Lin K., Erlacher L., Lembessis P., Costa T., Tsipouras P., Luyten F. P. Disruption of human limb morphogenesis by a dominant negative mutation in CDMP1. Nat Genet. 1997 Sep;17(1):58–64. doi: 10.1038/ng0997-58. [DOI] [PubMed] [Google Scholar]
  43. Thomas J. T., Lin K., Nandedkar M., Camargo M., Cervenka J., Luyten F. P. A human chondrodysplasia due to a mutation in a TGF-beta superfamily member. Nat Genet. 1996 Mar;12(3):315–317. doi: 10.1038/ng0396-315. [DOI] [PubMed] [Google Scholar]
  44. Tickle C. Vertebrate limb development. Curr Opin Genet Dev. 1995 Aug;5(4):478–484. doi: 10.1016/0959-437x(95)90052-i. [DOI] [PubMed] [Google Scholar]
  45. Vortkamp A., Gessler M., Grzeschik K. H. GLI3 zinc-finger gene interrupted by translocations in Greig syndrome families. Nature. 1991 Aug 8;352(6335):539–540. doi: 10.1038/352539a0. [DOI] [PubMed] [Google Scholar]
  46. Wagner T., Wirth J., Meyer J., Zabel B., Held M., Zimmer J., Pasantes J., Bricarelli F. D., Keutel J., Hustert E. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell. 1994 Dec 16;79(6):1111–1120. doi: 10.1016/0092-8674(94)90041-8. [DOI] [PubMed] [Google Scholar]
  47. Yang Y., Niswander L. Interaction between the signaling molecules WNT7a and SHH during vertebrate limb development: dorsal signals regulate anteroposterior patterning. Cell. 1995 Mar 24;80(6):939–947. doi: 10.1016/0092-8674(95)90297-x. [DOI] [PubMed] [Google Scholar]
  48. Yuan H., Corbi N., Basilico C., Dailey L. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev. 1995 Nov 1;9(21):2635–2645. doi: 10.1101/gad.9.21.2635. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES