Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1999 May;64(5):1445–1452. doi: 10.1086/302382

Heterogeneous X inactivation in trophoblastic cells of human full-term female placentas.

L H Looijenga 1, A J Gillis 1, A J Verkerk 1, W L van Putten 1, J W Oosterhuis 1
PMCID: PMC1377883  PMID: 10205278

Abstract

In female mammalian cells, one of the two X chromosomes is inactivated to compensate for gene-dose effects, which would be otherwise doubled compared with that in male cells. In somatic lineages in mice, the inactive X chromosome can be of either paternal or maternal origin, whereas the paternal X chromosome is specifically inactivated in placental tissue. In human somatic cells, X inactivation is mainly random, but both random and preferential paternal X inactivation have been reported in placental tissue. To shed more light on this issue, we used PCR to study the methylation status of the polymorphic androgen-receptor gene in full-term human female placentas. The sites investigated are specifically methylated on the inactive X chromosome. No methylation was found in microdissected stromal tissue, whether from placenta or umbilical cord. Of nine placentas for which two closely apposed samples were studied, X inactivation was preferentially maternal in three, was preferentially paternal in one, and was heterogeneous in the remaining five. Detailed investigation of two additional placentas demonstrated regions with balanced (1:1 ratio) preferentially maternal and preferentially paternal X inactivation. No differences in ratio were observed in samples microdissected to separate trophoblast and stromal tissues. We conclude that methylation of the androgen receptor in human full-term placenta is specific for trophoblastic cells and that the X chromosome can be of either paternal or maternal origin.

Full Text

The Full Text of this article is available as a PDF (585.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. C., Zoghbi H. Y., Moseley A. B., Rosenblatt H. M., Belmont J. W. Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. Am J Hum Genet. 1992 Dec;51(6):1229–1239. [PMC free article] [PubMed] [Google Scholar]
  2. Belmont J. W. Genetic control of X inactivation and processes leading to X-inactivation skewing. Am J Hum Genet. 1996 Jun;58(6):1101–1108. [PMC free article] [PubMed] [Google Scholar]
  3. Cattanach B. M., Perez J. N., Pollard C. E. Controlling elements in the mouse X-chromosome. II. Location in the linkage map. Genet Res. 1970 Apr;15(2):183–195. doi: 10.1017/s0016672300001518. [DOI] [PubMed] [Google Scholar]
  4. Disteche C. M. Escape from X inactivation in human and mouse. Trends Genet. 1995 Jan;11(1):17–22. doi: 10.1016/s0168-9525(00)88981-7. [DOI] [PubMed] [Google Scholar]
  5. Goto T., Wright E., Monk M. Paternal X-chromosome inactivation in human trophoblastic cells. Mol Hum Reprod. 1997 Jan;3(1):77–80. doi: 10.1093/molehr/3.1.77. [DOI] [PubMed] [Google Scholar]
  6. Harper M. I., Fosten M., Monk M. Preferential paternal X inactivation in extraembryonic tissues of early mouse embryos. J Embryol Exp Morphol. 1982 Feb;67:127–135. [PubMed] [Google Scholar]
  7. Harrison K. B., Warburton D. Preferential X-chromosome activity in human female placental tissues. Cytogenet Cell Genet. 1986;41(3):163–168. doi: 10.1159/000132221. [DOI] [PubMed] [Google Scholar]
  8. Harrison K. B. X-chromosome inactivation in the human cytotrophoblast. Cytogenet Cell Genet. 1989;52(1-2):37–41. doi: 10.1159/000132835. [DOI] [PubMed] [Google Scholar]
  9. Jacobs P. A., Hassold T. J., Whittington E., Butler G., Collyer S., Keston M., Lee M. Klinefelter's syndrome: an analysis of the origin of the additional sex chromosome using molecular probes. Ann Hum Genet. 1988 May;52(Pt 2):93–109. doi: 10.1111/j.1469-1809.1988.tb01084.x. [DOI] [PubMed] [Google Scholar]
  10. Li Y., Behringer R. R. Esx1 is an X-chromosome-imprinted regulator of placental development and fetal growth. Nat Genet. 1998 Nov;20(3):309–311. doi: 10.1038/3129. [DOI] [PubMed] [Google Scholar]
  11. Looijenga L. H., Gillis A. J., van Gurp R. J., Verkerk A. J., Oosterhuis J. W. X inactivation in human testicular tumors. XIST expression and androgen receptor methylation status. Am J Pathol. 1997 Aug;151(2):581–590. [PMC free article] [PubMed] [Google Scholar]
  12. Lyon M. F. Some milestones in the history of X-chromosome inactivation. Annu Rev Genet. 1992;26:16–28. doi: 10.1146/annurev.ge.26.120192.000313. [DOI] [PubMed] [Google Scholar]
  13. Migeon B. R., Do T. T. In search of non-random X inactivation: studies of fetal membranes heterozygous for glucose-6-phosphate dehydrogenase. Am J Hum Genet. 1979 Sep;31(5):581–585. [PMC free article] [PubMed] [Google Scholar]
  14. Migeon B. R. Non-random X chromosome inactivation in mammalian cells. Cytogenet Cell Genet. 1998;80(1-4):142–148. doi: 10.1159/000014971. [DOI] [PubMed] [Google Scholar]
  15. Migeon B. R., Wolf S. F., Axelman J., Kaslow D. C., Schmidt M. Incomplete X chromosome dosage compensation in chorionic villi of human placenta. Proc Natl Acad Sci U S A. 1985 May;82(10):3390–3394. doi: 10.1073/pnas.82.10.3390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mohandas T. K., Passage M. B., Williams J. W., 3rd, Sparkes R. S., Yen P. H., Shapiro L. J. X-chromosome inactivation in cultured cells from human chorionic villi. Somat Cell Mol Genet. 1989 Mar;15(2):131–136. doi: 10.1007/BF01535073. [DOI] [PubMed] [Google Scholar]
  17. Mosselman S., Looijenga L. H., Gillis A. J., van Rooijen M. A., Kraft H. J., van Zoelen E. J., Oosterhuis J. W. Aberrant platelet-derived growth factor alpha-receptor transcript as a diagnostic marker for early human germ cell tumors of the adult testis. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2884–2888. doi: 10.1073/pnas.93.7.2884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mrozek J. D., Holzknecht R. A., Butkowski R. J., Mauer S. M., Tuchman M. X-chromosome inactivation in the liver of female heterozygous OTC-deficient sparse-furash mice. Biochem Med Metab Biol. 1991 Jun;45(3):333–343. doi: 10.1016/0885-4505(91)90038-m. [DOI] [PubMed] [Google Scholar]
  19. Mutter G. L., Chaponot M. L., Fletcher J. A. A polymerase chain reaction assay for non-random X chromosome inactivation identifies monoclonal endometrial cancers and precancers. Am J Pathol. 1995 Feb;146(2):501–508. [PMC free article] [PubMed] [Google Scholar]
  20. Naumova A. K., Olien L., Bird L. M., Smith M., Verner A. E., Leppert M., Morgan K., Sapienza C. Genetic mapping of X-linked loci involved in skewing of X chromosome inactivation in the human. Eur J Hum Genet. 1998 Nov-Dec;6(6):552–562. doi: 10.1038/sj.ejhg.5200255. [DOI] [PubMed] [Google Scholar]
  21. Plenge R. M., Hendrich B. D., Schwartz C., Arena J. F., Naumova A., Sapienza C., Winter R. M., Willard H. F. A promoter mutation in the XIST gene in two unrelated families with skewed X-chromosome inactivation. Nat Genet. 1997 Nov;17(3):353–356. doi: 10.1038/ng1197-353. [DOI] [PubMed] [Google Scholar]
  22. Ricciuti F. C., Gelehrter T. D., Rosenberg L. E. X-chromosome inactivation in human liver: confirmation of X-linkage of ornithine transcarbamylase. Am J Hum Genet. 1976 Jul;28(4):332–338. [PMC free article] [PubMed] [Google Scholar]
  23. Ropers H. H., Wolff G., Hitzeroth H. W. Preferential X inactivation in human placenta membranes: is the paternal X inactive in early embryonic development of female mammals? Hum Genet. 1978 Sep 19;43(3):265–273. doi: 10.1007/BF00278833. [DOI] [PubMed] [Google Scholar]
  24. Skuse D. H., James R. S., Bishop D. V., Coppin B., Dalton P., Aamodt-Leeper G., Bacarese-Hamilton M., Creswell C., McGurk R., Jacobs P. A. Evidence from Turner's syndrome of an imprinted X-linked locus affecting cognitive function. Nature. 1997 Jun 12;387(6634):705–708. doi: 10.1038/42706. [DOI] [PubMed] [Google Scholar]
  25. Takagi N., Sasaki M. Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature. 1975 Aug 21;256(5519):640–642. doi: 10.1038/256640a0. [DOI] [PubMed] [Google Scholar]
  26. Tan S. S., Williams E. A., Tam P. P. X-chromosome inactivation occurs at different times in different tissues of the post-implantation mouse embryo. Nat Genet. 1993 Feb;3(2):170–174. doi: 10.1038/ng0293-170. [DOI] [PubMed] [Google Scholar]
  27. Verkerk A. J., Ariel I., Dekker M. C., Schneider T., van Gurp R. J., de Groot N., Gillis A. J., Oosterhuis J. W., Hochberg A. A., Looijenga L. H. Unique expression patterns of H19 in human testicular cancers of different etiology. Oncogene. 1997 Jan 9;14(1):95–107. doi: 10.1038/sj.onc.1200802. [DOI] [PubMed] [Google Scholar]
  28. West J. D., Frels W. I., Chapman V. M., Papaioannou V. E. Preferential expression of the maternally derived X chromosome in the mouse yolk sac. Cell. 1977 Dec;12(4):873–882. doi: 10.1016/0092-8674(77)90151-9. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES