Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 2000 Mar 27;66(5):1558–1568. doi: 10.1086/302903

Glycerol as a correlate of impaired glucose tolerance: dissection of a complex system by use of a simple genetic trait.

D Gaudet 1, S Arsenault 1, L Pérusse 1, M C Vohl 1, J St-Pierre 1, J Bergeron 1, J P Després 1, K Dewar 1, M J Daly 1, T Hudson 1, J D Rioux 1
PMCID: PMC1378005  PMID: 10736265

Abstract

Glycerol kinase (GK) represents the primary entry of glycerol into glucose and triglyceride metabolism. Impaired glucose tolerance (IGT) and hypertriglyceridemia are associated with an increased risk of diabetes mellitus and cardiovascular disease. The relationship between glycerol and the risk of IGT, however, is poorly understood. We therefore undertook the study of fasting plasma glycerol levels in a cohort of 1,056 unrelated men and women of French-Canadian descent. Family screening in the initial cohort identified 18 men from five families with severe hyperglycerolemia (values above 2.0 mmol/liter) and demonstrated an X-linked pattern of inheritance. Linkage analysis of the data from 12 microsatellite markers surrounding the Xp21.3 GK gene resulted in a peak LOD score of 3.46, centered around marker DXS8039. In addition, since all of the families originated in a population with a proven founder effect-the Saguenay Lac-St.-Jean region of Quebec-a common disease haplotype was sought. Indeed, a six-marker haplotype extending over a region of 5.5 cM was observed in all families. Resequencing of the GK gene in family members led to the discovery of a N288D missense mutation in exon 10, which resulted in the substitution of a highly conserved asparagine residue by a negatively charged aspartic acid. Although patients with the N288D mutation suffered from severe hyperglycerolemia, they were apparently otherwise healthy. The phenotypic analysis of the family members, however, showed that glycerol levels correlated with impaired glucose metabolism and body-fat distribution. We subsequently noted a substantial variation in glycerolemia in subjects of the initial cohort with normal plasma glycerol levels and demonstrated that this variance showed significant family resemblance. These results suggest a potentially important genetic connection between fasting glycerolemia and glucose homeostasis, not only in this X-linked deficiency but, potentially, in individuals within the "normal" range of plasma glycerol concentrations.

Full Text

The Full Text of this article is available as a PDF (419.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baba H., Zhang X. J., Wolfe R. R. Glycerol gluconeogenesis in fasting humans. Nutrition. 1995 Mar-Apr;11(2):149–153. [PubMed] [Google Scholar]
  2. Baumgartner R. N., Chumlea W. C., Roche A. F. Bioelectric impedance for body composition. Exerc Sport Sci Rev. 1990;18:193–224. [PubMed] [Google Scholar]
  3. Blomquist H. K., Dahl N., Gustafsson L., Hellerud C., Holme E., Holmgren G., Matsson L., von Zweigbergk M. Glycerol kinase deficiency in two brothers with and without clinical manifestations. Clin Genet. 1996 Nov;50(5):375–379. doi: 10.1111/j.1399-0004.1996.tb02391.x. [DOI] [PubMed] [Google Scholar]
  4. Bogardus C., Lillioja S., Ravussin E., Abbott W., Zawadzki J. K., Young A., Knowler W. C., Jacobowitz R., Moll P. P. Familial dependence of the resting metabolic rate. N Engl J Med. 1986 Jul 10;315(2):96–100. doi: 10.1056/NEJM198607103150205. [DOI] [PubMed] [Google Scholar]
  5. Chakrabarty K., Tauber J. W., Sigel B., Bombeck C. T., Jeffay H. Glycerokinase activity in human adipose tissue as related to obesity. Int J Obes. 1984;8(6):609–622. [PubMed] [Google Scholar]
  6. Davies K. E., Patterson M. N., Kenwrick S. J., Bell M. V., Sloan H. R., Westman J. A., Elsas L. J., 2nd, Mahan J. Fine mapping of glycerol kinase deficiency and congenital adrenal hypoplasia within Xp21 on the short arm of the human X chromosome. Am J Med Genet. 1988 Mar;29(3):557–564. doi: 10.1002/ajmg.1320290313. [DOI] [PubMed] [Google Scholar]
  7. Desbuquois B., Aurbach G. D. Use of polyethylene glycol to separate free and antibody-bound peptide hormones in radioimmunoassays. J Clin Endocrinol Metab. 1971 Nov;33(5):732–738. doi: 10.1210/jcem-33-5-732. [DOI] [PubMed] [Google Scholar]
  8. Eto K., Tsubamoto Y., Terauchi Y., Sugiyama T., Kishimoto T., Takahashi N., Yamauchi N., Kubota N., Murayama S., Aizawa T. Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science. 1999 Feb 12;283(5404):981–985. doi: 10.1126/science.283.5404.981. [DOI] [PubMed] [Google Scholar]
  9. Frank M. S., Nahata M. C., Hilty M. D. Glycerol: a review of its pharmacology, pharmacokinetics, adverse reactions, and clinical use. Pharmacotherapy. 1981 Sep-Oct;1(2):147–160. doi: 10.1002/j.1875-9114.1981.tb03562.x. [DOI] [PubMed] [Google Scholar]
  10. Gradie M. I., Jorde L. B., Bouchard G. Genetic structure of the Saguenay, 1852-1911: evidence from migration and isonymy matrices. Am J Phys Anthropol. 1988 Nov;77(3):321–333. doi: 10.1002/ajpa.1330770305. [DOI] [PubMed] [Google Scholar]
  11. Guo W., Worley K., Adams V., Mason J., Sylvester-Jackson D., Zhang Y. H., Towbin J. A., Fogt D. D., Madu S., Wheeler D. A. Genomic scanning for expressed sequences in Xp21 identifies the glycerol kinase gene. Nat Genet. 1993 Aug;4(4):367–372. doi: 10.1038/ng0893-367. [DOI] [PubMed] [Google Scholar]
  12. Gyapay G., Schmitt K., Fizames C., Jones H., Vega-Czarny N., Spillett D., Muselet D., Prud'homme J. F., Dib C., Auffray C. A radiation hybrid map of the human genome. Hum Mol Genet. 1996 Mar;5(3):339–346. doi: 10.1093/hmg/5.3.339. [DOI] [PubMed] [Google Scholar]
  13. Hawkins T. L., O'Connor-Morin T., Roy A., Santillan C. DNA purification and isolation using a solid-phase. Nucleic Acids Res. 1994 Oct 25;22(21):4543–4544. doi: 10.1093/nar/22.21.4543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Huq A. H., Lovell R. S., Ou C. N., Beaudet A. L., Craigen W. J. X-linked glycerol kinase deficiency in the mouse leads to growth retardation, altered fat metabolism, autonomous glucocorticoid secretion and neonatal death. Hum Mol Genet. 1997 Oct;6(11):1803–1809. doi: 10.1093/hmg/6.11.1803. [DOI] [PubMed] [Google Scholar]
  15. Jansson P. A., Larsson A., Smith U., Lönnroth P. Glycerol production in subcutaneous adipose tissue in lean and obese humans. J Clin Invest. 1992 May;89(5):1610–1617. doi: 10.1172/JCI115756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kruglyak L., Daly M. J., Reeve-Daly M. P., Lander E. S. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet. 1996 Jun;58(6):1347–1363. [PMC free article] [PubMed] [Google Scholar]
  17. McCabe E. R. Microcompartmentation of energy metabolism at the outer mitochondrial membrane: role in diabetes mellitus and other diseases. J Bioenerg Biomembr. 1994 Jun;26(3):317–325. doi: 10.1007/BF00763103. [DOI] [PubMed] [Google Scholar]
  18. McNamara J. R., Schaefer E. J. Automated enzymatic standardized lipid analyses for plasma and lipoprotein fractions. Clin Chim Acta. 1987 Jun 30;166(1):1–8. doi: 10.1016/0009-8981(87)90188-4. [DOI] [PubMed] [Google Scholar]
  19. Noel R. J., Antinozzi P. A., McGarry J. D., Newgard C. B. Engineering of glycerol-stimulated insulin secretion in islet beta cells. Differential metabolic fates of glucose and glycerol provide insight into mechanisms of stimulus-secretion coupling. J Biol Chem. 1997 Jul 25;272(30):18621–18627. doi: 10.1074/jbc.272.30.18621. [DOI] [PubMed] [Google Scholar]
  20. Pettigrew D. W., Ma D. P., Conrad C. A., Johnson J. R. Escherichia coli glycerol kinase. Cloning and sequencing of the glpK gene and the primary structure of the enzyme. J Biol Chem. 1988 Jan 5;263(1):135–139. [PubMed] [Google Scholar]
  21. Pettigrew D. W., Smith G. B., Thomas K. P., Dodds D. C. Conserved active site aspartates and domain-domain interactions in regulatory properties of the sugar kinase superfamily. Arch Biochem Biophys. 1998 Jan 15;349(2):236–245. doi: 10.1006/abbi.1997.0444. [DOI] [PubMed] [Google Scholar]
  22. Pérusse L., Rice T., Després J. P., Rao D. C., Bouchard C. Cross-trait familial resemblance for body fat and blood lipids: familial correlations in the Quebec Family Study. Arterioscler Thromb Vasc Biol. 1997 Nov;17(11):3270–3277. doi: 10.1161/01.atv.17.11.3270. [DOI] [PubMed] [Google Scholar]
  23. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care. 1997 Jul;20(7):1183–1197. doi: 10.2337/diacare.20.7.1183. [DOI] [PubMed] [Google Scholar]
  24. Richterich R., Dauwalder H. Zur Bestimmung der Plasmaglucosekonzentration mit der Hexokinase-Glucose-6-Phosphat-Dehydrogenase-Methode. Schweiz Med Wochenschr. 1971 May 1;101(17):615–618. [PubMed] [Google Scholar]
  25. Rioux J. D., Stone V. A., Daly M. J., Cargill M., Green T., Nguyen H., Nutman T., Zimmerman P. A., Tucker M. A., Hudson T. Familial eosinophilia maps to the cytokine gene cluster on human chromosomal region 5q31-q33. Am J Hum Genet. 1998 Oct;63(4):1086–1094. doi: 10.1086/302053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rognstad R., Clark D. G., Katz J. Pathways of glyceride glycerol synthesis. Biochem J. 1974 May;140(2):249–251. doi: 10.1042/bj1400249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Romero N. B., Récan D., Rigal O., Leturcq F., Llense S., Barbot J. C., Deburgrave N., Cheval M. A., Deniau F., Kaplan J. C. A point mutation in the glycerol kinase gene associated with a deletion in the dystrophin gene in a familial X-linked muscular dystrophy: non-contiguous gene syndrome involving Becker muscular dystrophy and glycerol kinase loci. Neuromuscul Disord. 1997 Dec;7(8):499–504. doi: 10.1016/s0960-8966(97)00114-4. [DOI] [PubMed] [Google Scholar]
  28. Rose C. I., Haines D. S. Familial hyperglycerolemia. J Clin Invest. 1978 Jan;61(1):163–170. doi: 10.1172/JCI108914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sargent C. A., Young C., Marsh S., Ferguson-Smith M. A., Affara N. A. The glycerol kinase gene family: structure of the Xp gene, and related intronless retroposons. Hum Mol Genet. 1994 Aug;3(8):1317–1324. doi: 10.1093/hmg/3.8.1317. [DOI] [PubMed] [Google Scholar]
  30. Sjarif D. R., Sinke R. J., Duran M., Beemer F. A., Kleijer W. J., Ploos van Amstel J. K., Poll-The B. T. Clinical heterogeneity and novel mutations in the glycerol kinase gene in three families with isolated glycerol kinase deficiency. J Med Genet. 1998 Aug;35(8):650–656. doi: 10.1136/jmg.35.8.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sommer S., Nau R., Wieland E., Prange H. W. Pharmacokinetics of glycerol administered orally in healthy volunteers. Arzneimittelforschung. 1993 Jul;43(7):744–747. [PubMed] [Google Scholar]
  32. Staden R. The Staden sequence analysis package. Mol Biotechnol. 1996 Jun;5(3):233–241. doi: 10.1007/BF02900361. [DOI] [PubMed] [Google Scholar]
  33. Walker A. P., Muscatelli F., Monaco A. P. Isolation of the human Xp21 glycerol kinase gene by positional cloning. Hum Mol Genet. 1993 Feb;2(2):107–114. doi: 10.1093/hmg/2.2.107. [DOI] [PubMed] [Google Scholar]
  34. Walker A. P., Muscatelli F., Stafford A. N., Chelly J., Dahl N., Blomquist H. K., Delanghe J., Willems P. J., Steinmann B., Monaco A. P. Mutations and phenotype in isolated glycerol kinase deficiency. Am J Hum Genet. 1996 Jun;58(6):1205–1211. [PMC free article] [PubMed] [Google Scholar]
  35. Yang X. J., Kow L. M., Funabashi T., Mobbs C. V. Hypothalamic glucose sensor: similarities to and differences from pancreatic beta-cell mechanisms. Diabetes. 1999 Sep;48(9):1763–1772. doi: 10.2337/diabetes.48.9.1763. [DOI] [PubMed] [Google Scholar]
  36. Yilmaz M. T., Sener A., Malaisse W. J. Glycerol phosphorylation and oxidation in pancreatic islets. Mol Cell Endocrinol. 1987 Aug;52(3):251–256. doi: 10.1016/0303-7207(87)90051-7. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES