Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 2000 Apr 4;66(5):1485–1495. doi: 10.1086/302893

Effects of cystic fibrosis and congenital bilateral absence of the vas deferens-associated mutations on cystic fibrosis transmembrane conductance regulator-mediated regulation of separate channels.

J E Mickle 1, M I Milewski 1, M Macek Jr 1, G R Cutting 1
PMCID: PMC1378012  PMID: 10762539

Abstract

The protein defective in cystic fibrosis (CF), the CF transmembrane-conductance regulator (CFTR), functions as an epithelial chloride channel and as a regulator of separate ion channels. Although the consequences that disease-causing mutations have on the chloride-channel function have been studied extensively, little is known about the effects that mutations have on the regulatory function. To address this issue, we transiently expressed CFTR-bearing mutations associated with CF or its milder phenotype, congenital bilateral absence of the vas deferens, and determined whether mutant CFTR could regulate outwardly rectifying chloride channels (ORCCs). CFTR bearing a CF-associated mutation in the first nucleotide-binding domain (NBD1), DeltaF508, functioned as a chloride channel but did not regulate ORCCs. However, CFTR bearing disease-associated mutations in other domains retained both functions, regardless of the associated phenotype. Thus, a relationship between loss of CFTR regulatory function and disease severity is evident for NBD1, a region of CFTR that appears important for regulation of separate channels.

Full Text

The Full Text of this article is available as a PDF (463.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. P., Rich D. P., Gregory R. J., Smith A. E., Welsh M. J. Generation of cAMP-activated chloride currents by expression of CFTR. Science. 1991 Feb 8;251(4994):679–682. doi: 10.1126/science.1704151. [DOI] [PubMed] [Google Scholar]
  2. Anderson M. P., Welsh M. J. Regulation by ATP and ADP of CFTR chloride channels that contain mutant nucleotide-binding domains. Science. 1992 Sep 18;257(5077):1701–1704. doi: 10.1126/science.1382316. [DOI] [PubMed] [Google Scholar]
  3. Anguiano A., Oates R. D., Amos J. A., Dean M., Gerrard B., Stewart C., Maher T. A., White M. B., Milunsky A. Congenital bilateral absence of the vas deferens. A primarily genital form of cystic fibrosis. JAMA. 1992 Apr 1;267(13):1794–1797. [PubMed] [Google Scholar]
  4. Audrézet M. P., Novelli G., Mercier B., Sangiuolo F., Maceratesi P., Férec C., Dallapiccola B. Identification of three novel cystic fibrosis mutations in a sample of Italian cystic fibrosis patients. Hum Hered. 1993 Sep-Oct;43(5):295–300. doi: 10.1159/000154147. [DOI] [PubMed] [Google Scholar]
  5. Bear C. E., Li C. H., Kartner N., Bridges R. J., Jensen T. J., Ramjeesingh M., Riordan J. R. Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell. 1992 Feb 21;68(4):809–818. doi: 10.1016/0092-8674(92)90155-6. [DOI] [PubMed] [Google Scholar]
  6. Bienvenu T., Adjiman M., Thiounn N., Jeanpierre M., Hubert D., Lepercoq J., Francoual C., Wolf J., Izard V., Jouannet P. Molecular diagnosis of congenital bilateral absence of the vas deferens: analyses of the CFTR gene in 64 French patients. Ann Genet. 1997;40(1):5–9. [PubMed] [Google Scholar]
  7. Bombieri C., Benetazzo M., Saccomani A., Belpinati F., Gilè L. S., Luisetti M., Pignatti P. F. Complete mutational screening of the CFTR gene in 120 patients with pulmonary disease. Hum Genet. 1998 Dec;103(6):718–722. doi: 10.1007/s004390050897. [DOI] [PubMed] [Google Scholar]
  8. Casals T., Bassas L., Ruiz-Romero J., Chillón M., Giménez J., Ramos M. D., Tapia G., Narváez H., Nunes V., Estivill X. Extensive analysis of 40 infertile patients with congenital absence of the vas deferens: in 50% of cases only one CFTR allele could be detected. Hum Genet. 1995 Feb;95(2):205–211. doi: 10.1007/BF00209403. [DOI] [PubMed] [Google Scholar]
  9. Chant J., Stowers L. GTPase cascades choreographing cellular behavior: movement, morphogenesis, and more. Cell. 1995 Apr 7;81(1):1–4. doi: 10.1016/0092-8674(95)90363-1. [DOI] [PubMed] [Google Scholar]
  10. Cheng S. H., Fang S. L., Zabner J., Marshall J., Piraino S., Schiavi S. C., Jefferson D. M., Welsh M. J., Smith A. E. Functional activation of the cystic fibrosis trafficking mutant delta F508-CFTR by overexpression. Am J Physiol. 1995 Apr;268(4 Pt 1):L615–L624. doi: 10.1152/ajplung.1995.268.4.L615. [DOI] [PubMed] [Google Scholar]
  11. Cheng S. H., Gregory R. J., Marshall J., Paul S., Souza D. W., White G. A., O'Riordan C. R., Smith A. E. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell. 1990 Nov 16;63(4):827–834. doi: 10.1016/0092-8674(90)90148-8. [DOI] [PubMed] [Google Scholar]
  12. Chillón M., Casals T., Mercier B., Bassas L., Lissens W., Silber S., Romey M. C., Ruiz-Romero J., Verlingue C., Claustres M. Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens. N Engl J Med. 1995 Jun 1;332(22):1475–1480. doi: 10.1056/NEJM199506013322204. [DOI] [PubMed] [Google Scholar]
  13. Claustres M., Laussel M., Desgeorges M., Giansily M., Culard J. F., Razakatsara G., Demaille J. Analysis of the 27 exons and flanking regions of the cystic fibrosis gene: 40 different mutations account for 91.2% of the mutant alleles in southern France. Hum Mol Genet. 1993 Aug;2(8):1209–1213. doi: 10.1093/hmg/2.8.1209. [DOI] [PubMed] [Google Scholar]
  14. Cotton C. U., Stutts M. J., Knowles M. R., Gatzy J. T., Boucher R. C. Abnormal apical cell membrane in cystic fibrosis respiratory epithelium. An in vitro electrophysiologic analysis. J Clin Invest. 1987 Jan;79(1):80–85. doi: 10.1172/JCI112812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dalemans W., Barbry P., Champigny G., Jallat S., Dott K., Dreyer D., Crystal R. G., Pavirani A., Lecocq J. P., Lazdunski M. Altered chloride ion channel kinetics associated with the delta F508 cystic fibrosis mutation. Nature. 1991 Dec 19;354(6354):526–528. doi: 10.1038/354526a0. [DOI] [PubMed] [Google Scholar]
  16. Denning G. M., Anderson M. P., Amara J. F., Marshall J., Smith A. E., Welsh M. J. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature. 1992 Aug 27;358(6389):761–764. doi: 10.1038/358761a0. [DOI] [PubMed] [Google Scholar]
  17. Drumm M. L., Pope H. A., Cliff W. H., Rommens J. M., Marvin S. A., Tsui L. C., Collins F. S., Frizzell R. A., Wilson J. M. Correction of the cystic fibrosis defect in vitro by retrovirus-mediated gene transfer. Cell. 1990 Sep 21;62(6):1227–1233. doi: 10.1016/0092-8674(90)90398-x. [DOI] [PubMed] [Google Scholar]
  18. Drumm M. L., Wilkinson D. J., Smit L. S., Worrell R. T., Strong T. V., Frizzell R. A., Dawson D. C., Collins F. S. Chloride conductance expressed by delta F508 and other mutant CFTRs in Xenopus oocytes. Science. 1991 Dec 20;254(5039):1797–1799. doi: 10.1126/science.1722350. [DOI] [PubMed] [Google Scholar]
  19. Egan M., Flotte T., Afione S., Solow R., Zeitlin P. L., Carter B. J., Guggino W. B. Defective regulation of outwardly rectifying Cl- channels by protein kinase A corrected by insertion of CFTR. Nature. 1992 Aug 13;358(6387):581–584. doi: 10.1038/358581a0. [DOI] [PubMed] [Google Scholar]
  20. Estivill X., Bancells C., Ramos C. Geographic distribution and regional origin of 272 cystic fibrosis mutations in European populations. The Biomed CF Mutation Analysis Consortium. Hum Mutat. 1997;10(2):135–154. doi: 10.1002/(SICI)1098-1004(1997)10:2<135::AID-HUMU6>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  21. Fanen P., Clain J., Labarthe R., Hulin P., Girodon E., Pagesy P., Goossens M., Edelman A. Structure-function analysis of a double-mutant cystic fibrosis transmembrane conductance regulator protein occurring in disorders related to cystic fibrosis. FEBS Lett. 1999 Jun 11;452(3):371–374. doi: 10.1016/s0014-5793(99)00647-x. [DOI] [PubMed] [Google Scholar]
  22. Frizzell R. A. Functions of the cystic fibrosis transmembrane conductance regulator protein. Am J Respir Crit Care Med. 1995 Mar;151(3 Pt 2):S54–S58. doi: 10.1164/ajrccm/151.3_Pt_2.S54. [DOI] [PubMed] [Google Scholar]
  23. Frizzell R. A., Rechkemmer G., Shoemaker R. L. Altered regulation of airway epithelial cell chloride channels in cystic fibrosis. Science. 1986 Aug 1;233(4763):558–560. doi: 10.1126/science.2425436. [DOI] [PubMed] [Google Scholar]
  24. Fulmer S. B., Schwiebert E. M., Morales M. M., Guggino W. B., Cutting G. R. Two cystic fibrosis transmembrane conductance regulator mutations have different effects on both pulmonary phenotype and regulation of outwardly rectified chloride currents. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6832–6836. doi: 10.1073/pnas.92.15.6832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Férec C., Verlingue C., Parent P., Morin J. F., Codet J. P., Rault G., Dagorne M., Lemoigne A., Journel H., Roussey M. Neonatal screening for cystic fibrosis: result of a pilot study using both immunoreactive trypsinogen and cystic fibrosis gene mutation analyses. Hum Genet. 1995 Nov;96(5):542–548. doi: 10.1007/BF00197409. [DOI] [PubMed] [Google Scholar]
  26. Gabriel S. E., Clarke L. L., Boucher R. C., Stutts M. J. CFTR and outward rectifying chloride channels are distinct proteins with a regulatory relationship. Nature. 1993 May 20;363(6426):263–268. doi: 10.1038/363263a0. [DOI] [PubMed] [Google Scholar]
  27. Gan K. H., Veeze H. J., van den Ouweland A. M., Halley D. J., Scheffer H., van der Hout A., Overbeek S. E., de Jongste J. C., Bakker W., Heijerman H. G. A cystic fibrosis mutation associated with mild lung disease. N Engl J Med. 1995 Jul 13;333(2):95–99. doi: 10.1056/NEJM199507133330204. [DOI] [PubMed] [Google Scholar]
  28. Gervais R., Dumur V., Letombe B., Larde A., Rigot J. M., Roussel P., Lafitte J. J. Hypofertility with thick cervical mucus: another mild form of cystic fibrosis? JAMA. 1996 Nov 27;276(20):1638–1638. [PubMed] [Google Scholar]
  29. Gregory R. J., Cheng S. H., Rich D. P., Marshall J., Paul S., Hehir K., Ostedgaard L., Klinger K. W., Welsh M. J., Smith A. E. Expression and characterization of the cystic fibrosis transmembrane conductance regulator. Nature. 1990 Sep 27;347(6291):382–386. doi: 10.1038/347382a0. [DOI] [PubMed] [Google Scholar]
  30. Gregory R. J., Rich D. P., Cheng S. H., Souza D. W., Paul S., Manavalan P., Anderson M. P., Welsh M. J., Smith A. E. Maturation and function of cystic fibrosis transmembrane conductance regulator variants bearing mutations in putative nucleotide-binding domains 1 and 2. Mol Cell Biol. 1991 Aug;11(8):3886–3893. doi: 10.1128/mcb.11.8.3886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Grubb B. R., Vick R. N., Boucher R. C. Hyperabsorption of Na+ and raised Ca(2+)-mediated Cl- secretion in nasal epithelia of CF mice. Am J Physiol. 1994 May;266(5 Pt 1):C1478–C1483. doi: 10.1152/ajpcell.1994.266.5.C1478. [DOI] [PubMed] [Google Scholar]
  32. Hamosh A., King T. M., Rosenstein B. J., Corey M., Levison H., Durie P., Tsui L. C., McIntosh I., Keston M., Brock D. J. Cystic fibrosis patients bearing both the common missense mutation Gly----Asp at codon 551 and the delta F508 mutation are clinically indistinguishable from delta F508 homozygotes, except for decreased risk of meconium ileus. Am J Hum Genet. 1992 Aug;51(2):245–250. [PMC free article] [PubMed] [Google Scholar]
  33. Hwang T. C., Lu L., Zeitlin P. L., Gruenert D. C., Huganir R., Guggino W. B. Cl- channels in CF: lack of activation by protein kinase C and cAMP-dependent protein kinase. Science. 1989 Jun 16;244(4910):1351–1353. doi: 10.1126/science.2472005. [DOI] [PubMed] [Google Scholar]
  34. Ismailov I. I., Awayda M. S., Jovov B., Berdiev B. K., Fuller C. M., Dedman J. R., Kaetzel M., Benos D. J. Regulation of epithelial sodium channels by the cystic fibrosis transmembrane conductance regulator. J Biol Chem. 1996 Mar 1;271(9):4725–4732. doi: 10.1074/jbc.271.9.4725. [DOI] [PubMed] [Google Scholar]
  35. Johnson L. G., Boyles S. E., Wilson J., Boucher R. C. Normalization of raised sodium absorption and raised calcium-mediated chloride secretion by adenovirus-mediated expression of cystic fibrosis transmembrane conductance regulator in primary human cystic fibrosis airway epithelial cells. J Clin Invest. 1995 Mar;95(3):1377–1382. doi: 10.1172/JCI117789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Jovov B., Ismailov I. I., Berdiev B. K., Fuller C. M., Sorscher E. J., Dedman J. R., Kaetzel M. A., Benos D. J. Interaction between cystic fibrosis transmembrane conductance regulator and outwardly rectified chloride channels. J Biol Chem. 1995 Dec 8;270(49):29194–29200. doi: 10.1074/jbc.270.49.29194. [DOI] [PubMed] [Google Scholar]
  37. Jézéquel P., Dorval I., Fergelot P., Chauvel B., Le Treut A., Le Gall J. Y., Le Lannou D., Blayau M. Structural analysis of CFTR gene in congenital bilateral absence of vas deferens. Clin Chem. 1995 Jun;41(6 Pt 1):833–835. [PubMed] [Google Scholar]
  38. Kerem B., Rommens J. M., Buchanan J. A., Markiewicz D., Cox T. K., Chakravarti A., Buchwald M., Tsui L. C. Identification of the cystic fibrosis gene: genetic analysis. Science. 1989 Sep 8;245(4922):1073–1080. doi: 10.1126/science.2570460. [DOI] [PubMed] [Google Scholar]
  39. Kunzelmann K., Kiser G. L., Schreiber R., Riordan J. R. Inhibition of epithelial Na+ currents by intracellular domains of the cystic fibrosis transmembrane conductance regulator. FEBS Lett. 1997 Jan 6;400(3):341–344. doi: 10.1016/s0014-5793(96)01414-7. [DOI] [PubMed] [Google Scholar]
  40. Le Lannou D., Jezequel P., Blayau M., Dorval I., Lemoine P., Dabadie A., Roussey M., Le Marec B., Legall J. Y. Obstructive azoospermia with agenesis of vas deferens or with bronchiectasia (Young's syndrome): a genetic approach. Hum Reprod. 1995 Feb;10(2):338–341. doi: 10.1093/oxfordjournals.humrep.a135939. [DOI] [PubMed] [Google Scholar]
  41. Lee M. G., Wigley W. C., Zeng W., Noel L. E., Marino C. R., Thomas P. J., Muallem S. Regulation of Cl-/ HCO3- exchange by cystic fibrosis transmembrane conductance regulator expressed in NIH 3T3 and HEK 293 cells. J Biol Chem. 1999 Feb 5;274(6):3414–3421. doi: 10.1074/jbc.274.6.3414. [DOI] [PubMed] [Google Scholar]
  42. Li M., McCann J. D., Liedtke C. M., Nairn A. C., Greengard P., Welsh M. J. Cyclic AMP-dependent protein kinase opens chloride channels in normal but not cystic fibrosis airway epithelium. Nature. 1988 Jan 28;331(6154):358–360. doi: 10.1038/331358a0. [DOI] [PubMed] [Google Scholar]
  43. Mall M., Bleich M., Greger R., Schreiber R., Kunzelmann K. The amiloride-inhibitable Na+ conductance is reduced by the cystic fibrosis transmembrane conductance regulator in normal but not in cystic fibrosis airways. J Clin Invest. 1998 Jul 1;102(1):15–21. doi: 10.1172/JCI2729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Mall M., Hipper A., Greger R., Kunzelmann K. Wild type but not deltaF508 CFTR inhibits Na+ conductance when coexpressed in Xenopus oocytes. FEBS Lett. 1996 Feb 26;381(1-2):47–52. doi: 10.1016/0014-5793(96)00079-8. [DOI] [PubMed] [Google Scholar]
  45. Mastrocola T., Porcelli A. M., Rugolo M. Role of CFTR and anion exchanger in bicarbonate fluxes in C127 cell lines. FEBS Lett. 1998 Dec 4;440(3):268–272. doi: 10.1016/s0014-5793(98)01468-9. [DOI] [PubMed] [Google Scholar]
  46. McNicholas C. M., Nason M. W., Jr, Guggino W. B., Schwiebert E. M., Hebert S. C., Giebisch G., Egan M. E. A functional CFTR-NBF1 is required for ROMK2-CFTR interaction. Am J Physiol. 1997 Nov;273(5 Pt 2):F843–F848. doi: 10.1152/ajprenal.1997.273.5.F843. [DOI] [PubMed] [Google Scholar]
  47. Mercier B., Lissens W., Novelli G., Kalaydjieva L., De Arce M., Kapranov N., Klain N. C., Lenoir G., Chauveau P., Lenaerts C. Identification of eight novel mutations in a collaborative analysis of a part of the second transmembrane domain of the CFTR gene. Genomics. 1993 Apr;16(1):296–297. doi: 10.1006/geno.1993.1183. [DOI] [PubMed] [Google Scholar]
  48. Mercier B., Lissens W., Novelli G., Kalaydjieva L., de Arce M., Kapranov N., Canki Klain N., Estivill X., Palacio A., Cashman S. A cluster of cystic fibrosis mutations in exon 17b of the CFTR gene: a site for rare mutations. J Med Genet. 1994 Sep;31(9):731–734. doi: 10.1136/jmg.31.9.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Mercier B., Verlingue C., Lissens W., Silber S. J., Novelli G., Bonduelle M., Audrézet M. P., Férec C. Is congenital bilateral absence of vas deferens a primary form of cystic fibrosis? Analyses of the CFTR gene in 67 patients. Am J Hum Genet. 1995 Jan;56(1):272–277. [PMC free article] [PubMed] [Google Scholar]
  50. Mickle J. E., Macek M., Jr, Fulmer-Smentek S. B., Egan M. M., Schwiebert E., Guggino W., Moss R., Cutting G. R. A mutation in the cystic fibrosis transmembrane conductance regulator gene associated with elevated sweat chloride concentrations in the absence of cystic fibrosis. Hum Mol Genet. 1998 Apr;7(4):729–735. doi: 10.1093/hmg/7.4.729. [DOI] [PubMed] [Google Scholar]
  51. Osborne L. R., Lynch M., Middleton P. G., Alton E. W., Geddes D. M., Pryor J. P., Hodson M. E., Santis G. K. Nasal epithelial ion transport and genetic analysis of infertile men with congenital bilateral absence of the vas deferens. Hum Mol Genet. 1993 Oct;2(10):1605–1609. doi: 10.1093/hmg/2.10.1605. [DOI] [PubMed] [Google Scholar]
  52. Reddy M. M., Light M. J., Quinton P. M. Activation of the epithelial Na+ channel (ENaC) requires CFTR Cl- channel function. Nature. 1999 Nov 18;402(6759):301–304. doi: 10.1038/46297. [DOI] [PubMed] [Google Scholar]
  53. Riordan J. R., Rommens J. M., Kerem B., Alon N., Rozmahel R., Grzelczak Z., Zielenski J., Lok S., Plavsic N., Chou J. L. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989 Sep 8;245(4922):1066–1073. doi: 10.1126/science.2475911. [DOI] [PubMed] [Google Scholar]
  54. Savov A., Mercier B., Kalaydjieva L., Férec C. Identification of six novel mutations in the CFTR gene of patients from Bulgaria by screening the twenty seven exons and exon/intron boundaries using DGGE and direct DNA sequencing. Hum Mol Genet. 1994 Jan;3(1):57–60. doi: 10.1093/hmg/3.1.57. [DOI] [PubMed] [Google Scholar]
  55. Schreiber R., Hopf A., Mall M., Greger R., Kunzelmann K. The first-nucleotide binding domain of the cystic-fibrosis transmembrane conductance regulator is important for inhibition of the epithelial Na+ channel. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5310–5315. doi: 10.1073/pnas.96.9.5310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Schwiebert E. M., Flotte T., Cutting G. R., Guggino W. B. Both CFTR and outwardly rectifying chloride channels contribute to cAMP-stimulated whole cell chloride currents. Am J Physiol. 1994 May;266(5 Pt 1):C1464–C1477. doi: 10.1152/ajpcell.1994.266.5.C1464. [DOI] [PubMed] [Google Scholar]
  57. Schwiebert E. M., Morales M. M., Devidas S., Egan M. E., Guggino W. B. Chloride channel and chloride conductance regulator domains of CFTR, the cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2674–2679. doi: 10.1073/pnas.95.5.2674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Seibert F. S., Linsdell P., Loo T. W., Hanrahan J. W., Clarke D. M., Riordan J. R. Disease-associated mutations in the fourth cytoplasmic loop of cystic fibrosis transmembrane conductance regulator compromise biosynthetic processing and chloride channel activity. J Biol Chem. 1996 Jun 21;271(25):15139–15145. doi: 10.1074/jbc.271.25.15139. [DOI] [PubMed] [Google Scholar]
  59. Sheppard D. N., Welsh M. J. Inhibition of the cystic fibrosis transmembrane conductance regulator by ATP-sensitive K+ channel regulators. Ann N Y Acad Sci. 1993 Dec 20;707:275–284. doi: 10.1111/j.1749-6632.1993.tb38058.x. [DOI] [PubMed] [Google Scholar]
  60. Shrimpton A. E., Borowitz D., Swender P. Cystic fibrosis mutation frequencies in upstate New York. Hum Mutat. 1997;10(6):436–442. doi: 10.1002/(SICI)1098-1004(1997)10:6<436::AID-HUMU4>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  61. Stutts M. J., Canessa C. M., Olsen J. C., Hamrick M., Cohn J. A., Rossier B. C., Boucher R. C. CFTR as a cAMP-dependent regulator of sodium channels. Science. 1995 Aug 11;269(5225):847–850. doi: 10.1126/science.7543698. [DOI] [PubMed] [Google Scholar]
  62. Tilmann M., Kunzelmann K., Fröbe U., Cabantchik I., Lang H. J., Englert H. C., Greger R. Different types of blockers of the intermediate-conductance outwardly rectifying chloride channel in epithelia. Pflugers Arch. 1991 Jul;418(6):556–563. doi: 10.1007/BF00370571. [DOI] [PubMed] [Google Scholar]
  63. Verlingue C., David A., Audrezet M. P., Le Roux M. G., Mercier B., Moisan J. P., Ferec C. Asymptomatic carrier of two CFTR mutations: consequences for prenatal diagnosis? Prenat Diagn. 1993 Dec;13(12):1143–1148. doi: 10.1002/pd.1970131210. [DOI] [PubMed] [Google Scholar]
  64. Ward C. L., Krouse M. E., Gruenert D. C., Kopito R. R., Wine J. J. Cystic fibrosis gene expression is not correlated with rectifying Cl- channels. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5277–5281. doi: 10.1073/pnas.88.12.5277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Welsh M. J., Liedtke C. M. Chloride and potassium channels in cystic fibrosis airway epithelia. 1986 Jul 31-Aug 6Nature. 322(6078):467–470. doi: 10.1038/322467a0. [DOI] [PubMed] [Google Scholar]
  66. Welsh M. J., Smith A. E. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell. 1993 Jul 2;73(7):1251–1254. doi: 10.1016/0092-8674(93)90353-r. [DOI] [PubMed] [Google Scholar]
  67. Youssoufian H., Auerbach A. D., Verlander P. C., Steimle V., Mach B. Identification of cytosolic proteins that bind to the Fanconi anemia complementation group C polypeptide in vitro. Evidence for a multimeric complex. J Biol Chem. 1995 Apr 28;270(17):9876–9882. doi: 10.1074/jbc.270.17.9876. [DOI] [PubMed] [Google Scholar]
  68. Zeitlin P. L., Lu L., Rhim J., Cutting G., Stetten G., Kieffer K. A., Craig R., Guggino W. B. A cystic fibrosis bronchial epithelial cell line: immortalization by adeno-12-SV40 infection. Am J Respir Cell Mol Biol. 1991 Apr;4(4):313–319. doi: 10.1165/ajrcmb/4.4.313. [DOI] [PubMed] [Google Scholar]
  69. Zolotukhin S., Potter M., Hauswirth W. W., Guy J., Muzyczka N. A "humanized" green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J Virol. 1996 Jul;70(7):4646–4654. doi: 10.1128/jvi.70.7.4646-4654.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. de la Taille A., Rigot J. M., Mahe P., Vankemmel O., Gervais R., Dumur V., Lemaitre L., Mazeman E. Correlation between genito-urinary anomalies, semen analysis and CFTR genotype in patients with congenital bilateral absence of the vas deferens. Br J Urol. 1998 Apr;81(4):614–619. doi: 10.1046/j.1464-410x.1998.00589.x. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES