Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 2000 Apr 6;66(5):1580–1588. doi: 10.1086/302905

Characteristics and frequency of germline mutations at microsatellite loci from the human Y chromosome, as revealed by direct observation in father/son pairs.

M Kayser 1, L Roewer 1, M Hedman 1, L Henke 1, J Henke 1, S Brauer 1, C Krüger 1, M Krawczak 1, M Nagy 1, T Dobosz 1, R Szibor 1, P de Knijff 1, M Stoneking 1, A Sajantila 1
PMCID: PMC1378017  PMID: 10762544

Abstract

A number of applications of analysis of human Y-chromosome microsatellite loci to human evolution and forensic science require reliable estimates of the mutation rate and knowledge of the mutational mechanism. We therefore screened a total of 4,999 meioses from father/son pairs with confirmed paternity (probability >/=99. 9%) at 15 Y-chromosomal microsatellite loci and identified 14 mutations. The locus-specific mutation-rate estimates were 0-8. 58x10-3, and the average mutation rate estimates were 3.17x10-3 (95% confidence interval [CI] 1.89-4.94x10-3) across 8 tetranucleotide microsatellites and 2.80x10-3 (95% CI 1.72-4.27x10-3) across all 15 Y-chromosomal microsatellites studied. Our data show a mutational bias toward length increase, on the basis of observation of more repeat gains than losses (10:4). The data are in almost complete agreement with the stepwise-mutation model, with 13 single-repeat changes and 1 double-repeat change. Sequence analysis revealed that all mutations occurred in uninterrupted homogenous arrays of >/=11 repeats. We conclude that mutation rates and characteristics of human Y-chromosomal microsatellites are consistent with those of autosomal microsatellites. This indicates that the general mutational mechanism of microsatellites is independent of recombination.

Full Text

The Full Text of this article is available as a PDF (302.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amos W., Rubinstzein D. C. Microsatellites are subject to directional evolution. Nat Genet. 1996 Jan;12(1):13–14. doi: 10.1038/ng0196-13. [DOI] [PubMed] [Google Scholar]
  2. Amos W., Sawcer S. J., Feakes R. W., Rubinsztein D. C. Microsatellites show mutational bias and heterozygote instability. Nat Genet. 1996 Aug;13(4):390–391. doi: 10.1038/ng0896-390. [DOI] [PubMed] [Google Scholar]
  3. BYRD C., OHTSUKA E., MOON M. W., KHORANA H. G. SYNTHETIC DEOXYRIBO-OLIGONUCLEOTIDES AS TEMPLATES FOR THE DNA POLYMERASE OF ESCHERICHIA COLI: NEW DNA-LIKE L-POLYMERS CONTAINING REPEATING NUCLEOTIDE SEQUENCES. Proc Natl Acad Sci U S A. 1965 Jan;53:79–86. doi: 10.1073/pnas.53.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bianchi N. O., Catanesi C. I., Bailliet G., Martinez-Marignac V. L., Bravi C. M., Vidal-Rioja L. B., Herrera R. J., López-Camelo J. S. Characterization of ancestral and derived Y-chromosome haplotypes of New World native populations. Am J Hum Genet. 1998 Dec;63(6):1862–1871. doi: 10.1086/302141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brinkmann B., Klintschar M., Neuhuber F., Hühne J., Rolf B. Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am J Hum Genet. 1998 Jun;62(6):1408–1415. doi: 10.1086/301869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chakraborty R., Kimmel M., Stivers D. N., Davison L. J., Deka R. Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):1041–1046. doi: 10.1073/pnas.94.3.1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Charlesworth B., Sniegowski P., Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994 Sep 15;371(6494):215–220. doi: 10.1038/371215a0. [DOI] [PubMed] [Google Scholar]
  8. Cooper G., Burroughs N. J., Rand D. A., Rubinsztein D. C., Amos W. Markov chain Monte Carlo analysis of human Y-chromosome microsatellites provides evidence of biased mutation. Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):11916–11921. doi: 10.1073/pnas.96.21.11916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cooper G., Rubinsztein D. C., Amos W. Ascertainment bias cannot entirely account for human microsatellites being longer than their chimpanzee homologues. Hum Mol Genet. 1998 Sep;7(9):1425–1429. doi: 10.1093/hmg/7.9.1425. [DOI] [PubMed] [Google Scholar]
  10. Di Rienzo A., Peterson A. C., Garza J. C., Valdes A. M., Slatkin M., Freimer N. B. Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3166–3170. doi: 10.1073/pnas.91.8.3166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ellegren H., Primmer C. R., Sheldon B. C. Microsatellite 'evolution': directionality or bias? Nat Genet. 1995 Dec;11(4):360–362. doi: 10.1038/ng1295-360. [DOI] [PubMed] [Google Scholar]
  12. Foote S., Vollrath D., Hilton A., Page D. C. The human Y chromosome: overlapping DNA clones spanning the euchromatic region. Science. 1992 Oct 2;258(5079):60–66. doi: 10.1126/science.1359640. [DOI] [PubMed] [Google Scholar]
  13. Goldstein D. B., Clark A. G. Microsatellite variation in North American populations of Drosophila melanogaster. Nucleic Acids Res. 1995 Oct 11;23(19):3882–3886. doi: 10.1093/nar/23.19.3882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gunn P. R., Trueman K., Stapleton P., Klarkowski D. B. DNA analysis in disputed parentage: the occurrence of two apparently false exclusions of paternity, both at short tandem repeat (STR) loci, in the one child. Electrophoresis. 1997 Aug;18(9):1650–1652. doi: 10.1002/elps.1150180930. [DOI] [PubMed] [Google Scholar]
  15. Henke J., Henke L. Mutation rate in human microsatellites. Am J Hum Genet. 1999 May;64(5):1473–1474. doi: 10.1086/302373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Heyer E., Puymirat J., Dieltjes P., Bakker E., de Knijff P. Estimating Y chromosome specific microsatellite mutation frequencies using deep rooting pedigrees. Hum Mol Genet. 1997 May;6(5):799–803. doi: 10.1093/hmg/6.5.799. [DOI] [PubMed] [Google Scholar]
  17. Jin L., Macaubas C., Hallmayer J., Kimura A., Mignot E. Mutation rate varies among alleles at a microsatellite locus: phylogenetic evidence. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15285–15288. doi: 10.1073/pnas.93.26.15285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jobling M. A., Heyer E., Dieltjes P., de Knijff P. Y-chromosome-specific microsatellite mutation rates re-examined using a minisatellite, MSY1. Hum Mol Genet. 1999 Oct;8(11):2117–2120. doi: 10.1093/hmg/8.11.2117. [DOI] [PubMed] [Google Scholar]
  19. Jobling M. A., Pandya A., Tyler-Smith C. The Y chromosome in forensic analysis and paternity testing. Int J Legal Med. 1997;110(3):118–124. doi: 10.1007/s004140050050. [DOI] [PubMed] [Google Scholar]
  20. Kayser M., Caglià A., Corach D., Fretwell N., Gehrig C., Graziosi G., Heidorn F., Herrmann S., Herzog B., Hidding M. Evaluation of Y-chromosomal STRs: a multicenter study. Int J Legal Med. 1997;110(3):125-33, 141-9. doi: 10.1007/s004140050051. [DOI] [PubMed] [Google Scholar]
  21. Krawczak M., Bockel B. A genetic factor model for the statistical analysis of multilocus DNA fingerprints. Electrophoresis. 1992 Jan-Feb;13(1-2):10–17. doi: 10.1002/elps.1150130104. [DOI] [PubMed] [Google Scholar]
  22. Lahermo P., Savontaus M. L., Sistonen P., Béres J., de Knijff P., Aula P., Sajantila A. Y chromosomal polymorphisms reveal founding lineages in the Finns and the Saami. Eur J Hum Genet. 1999 May-Jun;7(4):447–458. doi: 10.1038/sj.ejhg.5200316. [DOI] [PubMed] [Google Scholar]
  23. Malaspina P., Ciminelli B. M., Viggiano L., Jodice C., Cruciani F., Santolamazza P., Sellitto D., Scozzari R., Terrenato L., Rocchi M. Characterization of a small family (CAIII) of microsatellite-containing sequences with X-Y homology. J Mol Evol. 1997 Jun;44(6):652–659. doi: 10.1007/pl00006189. [DOI] [PubMed] [Google Scholar]
  24. Ohta T., Kimura M. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res. 1973 Oct;22(2):201–204. doi: 10.1017/s0016672300012994. [DOI] [PubMed] [Google Scholar]
  25. Redd A. J., Clifford S. L., Stoneking M. Multiplex DNA typing of short-tandem-repeat loci on the Y chromosome. Biol Chem. 1997 Aug;378(8):923–927. doi: 10.1515/bchm.1997.378.8.923. [DOI] [PubMed] [Google Scholar]
  26. Ruiz-Linares A., Ortíz-Barrientos D., Figueroa M., Mesa N., Múnera J. G., Bedoya G., Vélez I. D., García L. F., Pérez-Lezaun A., Bertranpetit J. Microsatellites provide evidence for Y chromosome diversity among the founders of the New World. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6312–6317. doi: 10.1073/pnas.96.11.6312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sajantila A., Lukka M., Syvänen A. C. Experimentally observed germline mutations at human micro- and minisatellite loci. Eur J Hum Genet. 1999 Feb-Mar;7(2):263–266. doi: 10.1038/sj.ejhg.5200257. [DOI] [PubMed] [Google Scholar]
  28. Santos F. R., Gerelsaikhan T., Munkhtuja B., Oyunsuren T., Epplen J. T., Pena S. D. Geographic differences in the allele frequencies of the human Y-linked tetranucleotide polymorphism DYS19. Hum Genet. 1996 Mar;97(3):309–313. doi: 10.1007/BF02185760. [DOI] [PubMed] [Google Scholar]
  29. Santos F. R., Rodriguez-Delfin L., Pena S. D., Moore J., Weiss K. M. North and South Amerindians may have the same major founder Y chromosome haplotype. Am J Hum Genet. 1996 Jun;58(6):1369–1370. [PMC free article] [PubMed] [Google Scholar]
  30. Schlötterer C., Ritter R., Harr B., Brem G. High mutation rate of a long microsatellite allele in Drosophila melanogaster provides evidence for allele-specific mutation rates. Mol Biol Evol. 1998 Oct;15(10):1269–1274. doi: 10.1093/oxfordjournals.molbev.a025855. [DOI] [PubMed] [Google Scholar]
  31. Schlötterer C., Tautz D. Slippage synthesis of simple sequence DNA. Nucleic Acids Res. 1992 Jan 25;20(2):211–215. doi: 10.1093/nar/20.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schneider P. M., Meuser S., Waiyawuth W., Seo Y., Rittner C. Tandem repeat structure of the duplicated Y-chromosomal STR locus DYS385 and frequency studies in the German and three Asian populations. Forensic Sci Int. 1998 Oct 12;97(1):61–70. doi: 10.1016/s0379-0738(98)00146-7. [DOI] [PubMed] [Google Scholar]
  33. Talbot C. C., Jr, Avramopoulos D., Gerken S., Chakravarti A., Armour J. A., Matsunami N., White R., Antonarakis S. E. The tetranucleotide repeat polymorphism D21S1245 demonstrates hypermutability in germline and somatic cells. Hum Mol Genet. 1995 Jul;4(7):1193–1199. doi: 10.1093/hmg/4.7.1193. [DOI] [PubMed] [Google Scholar]
  34. Underhill P. A., Jin L., Zemans R., Oefner P. J., Cavalli-Sforza L. L. A pre-Columbian Y chromosome-specific transition and its implications for human evolutionary history. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):196–200. doi: 10.1073/pnas.93.1.196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Valdes A. M., Slatkin M., Freimer N. B. Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics. 1993 Mar;133(3):737–749. doi: 10.1093/genetics/133.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Weber J. L., Wong C. Mutation of human short tandem repeats. Hum Mol Genet. 1993 Aug;2(8):1123–1128. doi: 10.1093/hmg/2.8.1123. [DOI] [PubMed] [Google Scholar]
  37. Wierdl M., Dominska M., Petes T. D. Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics. 1997 Jul;146(3):769–779. doi: 10.1093/genetics/146.3.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zerjal T., Dashnyam B., Pandya A., Kayser M., Roewer L., Santos F. R., Schiefenhövel W., Fretwell N., Jobling M. A., Harihara S. Genetic relationships of Asians and Northern Europeans, revealed by Y-chromosomal DNA analysis. Am J Hum Genet. 1997 May;60(5):1174–1183. [PMC free article] [PubMed] [Google Scholar]
  39. Zhang L., Leeflang E. P., Yu J., Arnheim N. Studying human mutations by sperm typing: instability of CAG trinucleotide repeats in the human androgen receptor gene. Nat Genet. 1994 Aug;7(4):531–535. doi: 10.1038/ng0894-531. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES