Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 2000 Apr 20;66(6):1958–1962. doi: 10.1086/302917

Parent-of-origin specific histone acetylation and reactivation of a key imprinted gene locus in Prader-Willi syndrome.

S Saitoh 1, T Wada 1
PMCID: PMC1378035  PMID: 10775525

Abstract

To examine the chromatin basis of imprinting in chromosome 15q11-q13, we have investigated the status of histone acetylation of the SNURF-SNRPN locus, which is a key imprinted gene locus in Prader-Willi syndrome (PWS). Chromatin immunoprecipitation (ChIP) studies revealed that the unmethylated CpG island of the active, paternally derived allele of SNURF-SNRPN was associated with acetylated histones, whereas the methylated maternally derived, inactive allele was specifically hypoacetylated. The body of the SNURF-SNRPN gene was associated with acetylated histones on both alleles. Furthermore, treatment of PWS cells with the DNA methyltransferase inhibitor 5-azadeoxycytidine (5-aza-dC) induced demethylation of the SNURF-SNRPN CpG island and restoration of gene expression on the maternal allele. The reactivation was associated with increased H4 acetylation but not with H3 acetylation at the SNURF-SNRPN CpG island. These findings indicate that (1) a significant role for histone deacetylation in gene silencing is associated with imprinting in 15q11-q13 and (2) silenced genes in PWS can be reactivated by drug treatment.

Full Text

The Full Text of this article is available as a PDF (258.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brannan C. I., Bartolomei M. S. Mechanisms of genomic imprinting. Curr Opin Genet Dev. 1999 Apr;9(2):164–170. doi: 10.1016/S0959-437X(99)80025-2. [DOI] [PubMed] [Google Scholar]
  2. Braunstein M., Rose A. B., Holmes S. G., Allis C. D., Broach J. R. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 1993 Apr;7(4):592–604. doi: 10.1101/gad.7.4.592. [DOI] [PubMed] [Google Scholar]
  3. Chiurazzi P., Pomponi M. G., Willemsen R., Oostra B. A., Neri G. In vitro reactivation of the FMR1 gene involved in fragile X syndrome. Hum Mol Genet. 1998 Jan;7(1):109–113. doi: 10.1093/hmg/7.1.109. [DOI] [PubMed] [Google Scholar]
  4. Coffee B., Zhang F., Warren S. T., Reines D. Acetylated histones are associated with FMR1 in normal but not fragile X-syndrome cells. Nat Genet. 1999 May;22(1):98–101. doi: 10.1038/8807. [DOI] [PubMed] [Google Scholar]
  5. Fuks F., Burgers W. A., Brehm A., Hughes-Davies L., Kouzarides T. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet. 2000 Jan;24(1):88–91. doi: 10.1038/71750. [DOI] [PubMed] [Google Scholar]
  6. Gilbert S. L., Sharp P. A. Promoter-specific hypoacetylation of X-inactivated genes. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13825–13830. doi: 10.1073/pnas.96.24.13825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gray T. A., Saitoh S., Nicholls R. D. An imprinted, mammalian bicistronic transcript encodes two independent proteins. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5616–5621. doi: 10.1073/pnas.96.10.5616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Heard E., Clerc P., Avner P. X-chromosome inactivation in mammals. Annu Rev Genet. 1997;31:571–610. doi: 10.1146/annurev.genet.31.1.571. [DOI] [PubMed] [Google Scholar]
  9. Hu J. F., Oruganti H., Vu T. H., Hoffman A. R. The role of histone acetylation in the allelic expression of the imprinted human insulin-like growth factor II gene. Biochem Biophys Res Commun. 1998 Oct 20;251(2):403–408. doi: 10.1006/bbrc.1998.9401. [DOI] [PubMed] [Google Scholar]
  10. Jeppesen P., Turner B. M. The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell. 1993 Jul 30;74(2):281–289. doi: 10.1016/0092-8674(93)90419-q. [DOI] [PubMed] [Google Scholar]
  11. Jones P. L., Veenstra G. J., Wade P. A., Vermaak D., Kass S. U., Landsberger N., Strouboulis J., Wolffe A. P. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet. 1998 Jun;19(2):187–191. doi: 10.1038/561. [DOI] [PubMed] [Google Scholar]
  12. Kubota T., Das S., Christian S. L., Baylin S. B., Herman J. G., Ledbetter D. H. Methylation-specific PCR simplifies imprinting analysis. Nat Genet. 1997 May;16(1):16–17. doi: 10.1038/ng0597-15. [DOI] [PubMed] [Google Scholar]
  13. Ley T. J., DeSimone J., Anagnou N. P., Keller G. H., Humphries R. K., Turner P. H., Young N. S., Keller P., Nienhuis A. W. 5-azacytidine selectively increases gamma-globin synthesis in a patient with beta+ thalassemia. N Engl J Med. 1982 Dec 9;307(24):1469–1475. doi: 10.1056/NEJM198212093072401. [DOI] [PubMed] [Google Scholar]
  14. Munroe D. J., Haas M., Bric E., Whitton T., Aburatani H., Hunter K., Ward D., Housman D. E. IRE-bubble PCR: a rapid method for efficient and representative amplification of human genomic DNA sequences from complex sources. Genomics. 1994 Feb;19(3):506–514. doi: 10.1006/geno.1994.1100. [DOI] [PubMed] [Google Scholar]
  15. Nakao M., Sutcliffe J. S., Durtschi B., Mutirangura A., Ledbetter D. H., Beaudet A. L. Imprinting analysis of three genes in the Prader-Willi/Angelman region: SNRPN, E6-associated protein, and PAR-2 (D15S225E). Hum Mol Genet. 1994 Feb;3(2):309–315. doi: 10.1093/hmg/3.2.309. [DOI] [PubMed] [Google Scholar]
  16. Nan X., Ng H. H., Johnson C. A., Laherty C. D., Turner B. M., Eisenman R. N., Bird A. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998 May 28;393(6683):386–389. doi: 10.1038/30764. [DOI] [PubMed] [Google Scholar]
  17. Ng H. H., Zhang Y., Hendrich B., Johnson C. A., Turner B. M., Erdjument-Bromage H., Tempst P., Reinberg D., Bird A. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet. 1999 Sep;23(1):58–61. doi: 10.1038/12659. [DOI] [PubMed] [Google Scholar]
  18. Nicholls R. D., Saitoh S., Horsthemke B. Imprinting in Prader-Willi and Angelman syndromes. Trends Genet. 1998 May;14(5):194–200. doi: 10.1016/s0168-9525(98)01432-2. [DOI] [PubMed] [Google Scholar]
  19. Pedone P. V., Pikaart M. J., Cerrato F., Vernucci M., Ungaro P., Bruni C. B., Riccio A. Role of histone acetylation and DNA methylation in the maintenance of the imprinted expression of the H19 and Igf2 genes. FEBS Lett. 1999 Sep 10;458(1):45–50. doi: 10.1016/s0014-5793(99)01124-2. [DOI] [PubMed] [Google Scholar]
  20. Wade P. A., Gegonne A., Jones P. L., Ballestar E., Aubry F., Wolffe A. P. Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat Genet. 1999 Sep;23(1):62–66. doi: 10.1038/12664. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES