Abstract
Although association analysis is a useful tool for uncovering the genetic underpinnings of complex traits, its utility is diminished by population substructure, which can produce spurious association between phenotype and genotype within population-based samples. Because family-based designs are robust against substructure, they have risen to the fore of association analysis. Yet, if population substructure could be ignored, this robustness can come at the price of power. Unfortunately it is rarely evident when population substructure can be ignored. Devlin and Roeder recently have proposed a method, termed "genomic control" (GC), which has the robustness of family-based designs even though it uses population-based data. GC uses the genome itself to determine appropriate corrections for population-based association tests. Using the GC method, we contrast the power of two study designs, family trios (i.e., father, mother, and affected progeny) versus case-control. For analysis of trios, we use the TDT test. When population substructure is absent, we find GC is always more powerful than TDT; furthermore, contrary to previous results, we show that as a disease becomes more prevalent the discrepancy in power becomes more extreme. When population substructure is present, however, the results are more complex: TDT is more powerful when population substructure is substantial, and GC is more powerful otherwise. We also explore general issues of power and implementation of GC within the case-control setting and find that, economically, GC is at least comparable to and often less expensive than family-based methods. Therefore, GC methods should prove a useful complement to family-based methods for the genetic analysis of complex traits.
Full Text
The Full Text of this article is available as a PDF (261.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Collins F. S., Patrinos A., Jordan E., Chakravarti A., Gesteland R., Walters L. New goals for the U.S. Human Genome Project: 1998-2003. Science. 1998 Oct 23;282(5389):682–689. doi: 10.1126/science.282.5389.682. [DOI] [PubMed] [Google Scholar]
- Devlin B., Risch N., Roeder K. Statistical evaluation of DNA fingerprinting: a critique of the NRC's report. Science. 1993 Feb 5;259(5096):748-9, 837. doi: 10.1126/science.8430323. [DOI] [PubMed] [Google Scholar]
- Devlin B., Roeder K. Genomic control for association studies. Biometrics. 1999 Dec;55(4):997–1004. doi: 10.1111/j.0006-341x.1999.00997.x. [DOI] [PubMed] [Google Scholar]
- Ewens W. J., Spielman R. S. The transmission/disequilibrium test: history, subdivision, and admixture. Am J Hum Genet. 1995 Aug;57(2):455–464. [PMC free article] [PubMed] [Google Scholar]
- Houwen R. H., Baharloo S., Blankenship K., Raeymaekers P., Juyn J., Sandkuijl L. A., Freimer N. B. Genome screening by searching for shared segments: mapping a gene for benign recurrent intrahepatic cholestasis. Nat Genet. 1994 Dec;8(4):380–386. doi: 10.1038/ng1294-380. [DOI] [PubMed] [Google Scholar]
- Knapp M. A note on power approximations for the transmission/disequilibrium test. Am J Hum Genet. 1999 Apr;64(4):1177–1185. doi: 10.1086/302334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morton N. E., Collins A. Tests and estimates of allelic association in complex inheritance. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11389–11393. doi: 10.1073/pnas.95.19.11389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morton N. E. Genetic structure of forensic populations. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2556–2560. doi: 10.1073/pnas.89.7.2556. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Puffenberger E. G., Kauffman E. R., Bolk S., Matise T. C., Washington S. S., Angrist M., Weissenbach J., Garver K. L., Mascari M., Ladda R. Identity-by-descent and association mapping of a recessive gene for Hirschsprung disease on human chromosome 13q22. Hum Mol Genet. 1994 Aug;3(8):1217–1225. doi: 10.1093/hmg/3.8.1217. [DOI] [PubMed] [Google Scholar]
- Risch N. Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet. 1990 Feb;46(2):222–228. [PMC free article] [PubMed] [Google Scholar]
- Risch N., Merikangas K. The future of genetic studies of complex human diseases. Science. 1996 Sep 13;273(5281):1516–1517. doi: 10.1126/science.273.5281.1516. [DOI] [PubMed] [Google Scholar]
- Risch N., Teng J. The relative power of family-based and case-control designs for linkage disequilibrium studies of complex human diseases I. DNA pooling. Genome Res. 1998 Dec;8(12):1273–1288. doi: 10.1101/gr.8.12.1273. [DOI] [PubMed] [Google Scholar]
- Slager S. L., Huang J., Vieland V. J. Effect of allelic heterogeneity on the power of the transmission disequilibrium test. Genet Epidemiol. 2000 Feb;18(2):143–156. doi: 10.1002/(SICI)1098-2272(200002)18:2<143::AID-GEPI4>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
- Spielman R. S., McGinnis R. E., Ewens W. J. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet. 1993 Mar;52(3):506–516. [PMC free article] [PubMed] [Google Scholar]
- Suarez B. K., Rice J., Reich T. The generalized sib pair IBD distribution: its use in the detection of linkage. Ann Hum Genet. 1978 Jul;42(1):87–94. doi: 10.1111/j.1469-1809.1978.tb00933.x. [DOI] [PubMed] [Google Scholar]
- Wang D. G., Fan J. B., Siao C. J., Berno A., Young P., Sapolsky R., Ghandour G., Perkins N., Winchester E., Spencer J. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998 May 15;280(5366):1077–1082. doi: 10.1126/science.280.5366.1077. [DOI] [PubMed] [Google Scholar]