Skip to main content
Gut logoLink to Gut
. 1991 Apr;32(4):383–385. doi: 10.1136/gut.32.4.383

Acetate uptake by intestinal brush border membrane vesicles.

A J Watson 1, E A Brennan 1, M J Farthing 1, P D Fairclough 1
PMCID: PMC1379075  PMID: 2026338

Abstract

The mechanism of acetate absorption in the small intestine is not yet established. One possible mechanism is by carrier mediated Na(+)-acetate cotransport since acetate, like glucose, stimulates intestinal Na+ and water absorption in vivo. Uptake of radioactive carbon acetate by small intestinal brush border membrane vesicles was not saturable or Na+ dependent and did not respond to osmotic shrinkage of the vesicles. This suggests that acetate binds to the membranes but is not transported into the intravesicular space and argues against carrier mediated Na+ acetate cotransport. These results are consistent with acetate absorption by a non-mediated diffusion and suggest that the stimulation of water and Na+ absorption by acetate in vivo is largely due to osmotic forces and solvent drag.

Full text

PDF
384

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Eichholz A. Structural and functional organization of the brush border of intestinal epithelial cells. 3. Enzymic activities and chemical composition of various fractions of tris-disrupted brush borders. Biochim Biophys Acta. 1967 Jul 3;135(3):475–482. doi: 10.1016/0005-2736(67)90037-5. [DOI] [PubMed] [Google Scholar]
  2. Fleming S. E., Arce D. S. Volatile fatty acids: their production, absorption, utilization, and roles in human health. Clin Gastroenterol. 1986 Oct;15(4):787–814. [PubMed] [Google Scholar]
  3. Fordtran J. S. Stimulation of active and passive sodium absorption by sugars in the human jejunum. J Clin Invest. 1975 Apr;55(4):728–737. doi: 10.1172/JCI107983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hopfer U., Nelson K., Perrotto J., Isselbacher K. J. Glucose transport in isolated brush border membrane from rat small intestine. J Biol Chem. 1973 Jan 10;248(1):25–32. [PubMed] [Google Scholar]
  5. Jørgensen K. E., Sheikh M. I. Characteristics of uptake of short chain fatty acids by luminal membrane vesicles from rabbit kidney. Biochim Biophys Acta. 1986 Sep 11;860(3):632–640. doi: 10.1016/0005-2736(86)90563-8. [DOI] [PubMed] [Google Scholar]
  6. Kinne R., Murer H., Kinne-Saffran E., Thees M., Sachs G. Sugar transport by renal plasma membrane vesicles. Characterization of the systems in the brush-border microvilli and basal-lateral plasma membranes. J Membr Biol. 1975;21(3-4):375–395. doi: 10.1007/BF01941077. [DOI] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Liedtke C. M., Hopfer U. Anion transport in brush border membranes isolated from rat small intestine. Biochem Biophys Res Commun. 1976 May 23;76(2):579–585. doi: 10.1016/0006-291x(77)90763-x. [DOI] [PubMed] [Google Scholar]
  9. Luciano L., Reale E., Rechkemmer G., von Engelhardt W. Structure of zonulae occludentes and the permeability of the epithelium to short-chain fatty acids in the proximal and the distal colon of guinea pig. J Membr Biol. 1984;82(2):145–156. doi: 10.1007/BF01868939. [DOI] [PubMed] [Google Scholar]
  10. Malathi P., Preiser H., Fairclough P., Mallett P., Crane R. K. A rapid method for the isolation of kidney brush border membranes. Biochim Biophys Acta. 1979 Jun 13;554(1):259–263. doi: 10.1016/0005-2736(79)90023-3. [DOI] [PubMed] [Google Scholar]
  11. Naupert C., Rommel K. Absorption of short and medium chain fatty acids in the jejunum of the rat. Z Klin Chem Klin Biochem. 1975 Dec;13(12):553–562. doi: 10.1515/cclm.1975.13.12.553. [DOI] [PubMed] [Google Scholar]
  12. Rolston D. D., Kelly M. J., Borodo M. M., Dawson A. M., Farthing M. J. Effect of bicarbonate, acetate, and citrate on water and sodium movement in normal and cholera toxin-treated rat small intestine. Scand J Gastroenterol. 1989 Jan;24(1):1–8. doi: 10.3109/00365528909092231. [DOI] [PubMed] [Google Scholar]
  13. Rolston D. D., Moriarty K. J., Farthing M. J., Kelly M. J., Clark M. L., Dawson A. M. Acetate and citrate stimulate water and sodium absorption in the human jejunum. Digestion. 1986;34(2):101–104. doi: 10.1159/000199317. [DOI] [PubMed] [Google Scholar]
  14. Sallee V. L., Dietschy J. M. Determinants of intestinal mucosal uptake of short- and medium-chain fatty acids and alcohols. J Lipid Res. 1973 Jul;14(4):475–484. [PubMed] [Google Scholar]
  15. Scharschmidt B. F., Keeffe E. B., Blankenship N. M., Ockner R. K. Validation of a recording spectrophotometric method for measurement of membrane-associated Mg- and NaK-ATPase activity. J Lab Clin Med. 1979 May;93(5):790–799. [PubMed] [Google Scholar]
  16. Stieger B., Murer H. Heterogeneity of brush-border-membrane vesicles from rat small intestine prepared by a precipitation method using Mg/EGTA. Eur J Biochem. 1983 Sep 1;135(1):95–101. doi: 10.1111/j.1432-1033.1983.tb07622.x. [DOI] [PubMed] [Google Scholar]
  17. Watson A. J., Elliott E. J., Rolston D. D., Borodo M. M., Farthing M. J., Fairclough P. D. Acetate absorption in the normal and secreting rat jejunum. Gut. 1990 Feb;31(2):170–174. doi: 10.1136/gut.31.2.170. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES