Skip to main content
British Journal of Clinical Pharmacology logoLink to British Journal of Clinical Pharmacology
. 1989 Aug;28(2):166–170. doi: 10.1111/j.1365-2125.1989.tb05410.x

Comparative effects of two antimycotic agents, ketoconazole and terbinafine on the metabolism of tolbutamide, ethinyloestradiol, cyclosporin and ethoxycoumarin by human liver microsomes in vitro.

D J Back 1, P Stevenson 1, J F Tjia 1
PMCID: PMC1379899  PMID: 2775622

Abstract

Two antimycotic agents, the azole ketoconazole and the allylamine terbinafine, have been examined for their effects on the metabolism of tolbutamide, ethinyloestradiol, cyclosporin and ethoxycoumarin by human liver microsomes (n = 4) in vitro. Ketoconazole caused marked inhibition of all enzyme activities with mean IC50 values (concentration producing 50% inhibition) of 17.9 microM (tolbutamide hydroxylase), 1.9 microM (ethinyloestradiol 2-hydroxylase), 2.0 microM (cyclosporin N-demethylase), 2.1 microM (cyclosporin hydroxylase) and 25 microM (ethoxycoumarin O-deethylase). At 50 microM terbinafine concentration, inhibition was less than 5% for tolbutamide and ethoxycoumarin, approximately 12% for both cyclosporin pathways and 35% for ethinyloestradiol. Terbinafine does not have the same inhibitory potential for cytochrome P-450 isozymes as ketoconazole.

Full text

PDF
166

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Back D. J., Tjia J. F. Inhibition of tolbutamide metabolism by substituted imidazole drugs in vivo: evidence for a structure-activity relationship. Br J Pharmacol. 1985 May;85(1):121–126. doi: 10.1111/j.1476-5381.1985.tb08838.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Back D. J., Tjia J. F., Karbwang J., Colbert J. In vitro inhibition studies of tolbutamide hydroxylase activity of human liver microsomes by azoles, sulphonamides and quinolines. Br J Clin Pharmacol. 1988 Jul;26(1):23–29. doi: 10.1111/j.1365-2125.1988.tb03359.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown M. W., Maldonado A. L., Meredith C. G., Speeg K. V., Jr Effect of ketoconazole on hepatic oxidative drug metabolism. Clin Pharmacol Ther. 1985 Mar;37(3):290–297. doi: 10.1038/clpt.1985.42. [DOI] [PubMed] [Google Scholar]
  4. Cockburn I. Cyclosporine A: a clinical evaluation of drug interactions. Transplant Proc. 1986 Dec;18(6 Suppl 5):50–55. [PubMed] [Google Scholar]
  5. Dieperink H., Møller J. Ketoconazole and cyclosporin. Lancet. 1982 Nov 27;2(8309):1217–1217. doi: 10.1016/s0140-6736(82)91231-4. [DOI] [PubMed] [Google Scholar]
  6. Ferguson R. M., Sutherland D. E., Simmons R. L., Najarian J. S. Ketoconazole, cyclosporin metabolism, and renal transplantation. Lancet. 1982 Oct 16;2(8303):882–883. doi: 10.1016/s0140-6736(82)90851-0. [DOI] [PubMed] [Google Scholar]
  7. Greenlee W. F., Poland A. An improved assay of 7-ethoxycoumarin O-deethylase activity: induction of hepatic enzyme activity in C57BL/6J and DBA/2J mice by phenobarbital, 3-methylcholanthrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Pharmacol Exp Ther. 1978 Jun;205(3):596–605. [PubMed] [Google Scholar]
  8. Guengerich F. P. Oxidation of 17 alpha-ethynylestradiol by human liver cytochrome P-450. Mol Pharmacol. 1988 May;33(5):500–508. [PubMed] [Google Scholar]
  9. Knodell R. G., Hall S. D., Wilkinson G. R., Guengerich F. P. Hepatic metabolism of tolbutamide: characterization of the form of cytochrome P-450 involved in methyl hydroxylation and relationship to in vivo disposition. J Pharmacol Exp Ther. 1987 Jun;241(3):1112–1119. [PubMed] [Google Scholar]
  10. Kronbach T., Fischer V., Meyer U. A. Cyclosporine metabolism in human liver: identification of a cytochrome P-450III gene family as the major cyclosporine-metabolizing enzyme explains interactions of cyclosporine with other drugs. Clin Pharmacol Ther. 1988 Jun;43(6):630–635. doi: 10.1038/clpt.1988.87. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Lavrijsen K., van Houdt J., Thijs D., Meuldermans W., Heykants J. Interaction of miconazole, ketoconazole and itraconazole with rat-liver microsomes. Xenobiotica. 1987 Jan;17(1):45–57. doi: 10.3109/00498258709047174. [DOI] [PubMed] [Google Scholar]
  13. MacLean M. R., Hiley C. R. Effects of enalapril on changes in cardiac output and organ vascular resistances induced by alpha 1- and alpha 2-adrenoceptor agonists in pithed normotensive rats. Br J Pharmacol. 1988 Jun;94(2):449–462. doi: 10.1111/j.1476-5381.1988.tb11547.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Meredith C. G., Maldonado A. L., Speeg K. V., Jr The effect of ketoconazole on hepatic oxidative drug metabolism in the rat in vivo and in vitro. Drug Metab Dispos. 1985 Mar-Apr;13(2):156–162. [PubMed] [Google Scholar]
  15. Miners J. O., Smith K. J., Robson R. A., McManus M. E., Veronese M. E., Birkett D. J. Tolbutamide hydroxylation by human liver microsomes. Kinetic characterisation and relationship to other cytochrome P-450 dependent xenobiotic oxidations. Biochem Pharmacol. 1988 Mar 15;37(6):1137–1144. doi: 10.1016/0006-2952(88)90522-9. [DOI] [PubMed] [Google Scholar]
  16. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem. 1964 Jul;239:2370–2378. [PubMed] [Google Scholar]
  17. Pelkonen O., Pasanen M., Kuha H., Gachalyi B., Kairaluoma M., Sotaniemi E. A., Park S. S., Friedman F. K., Gelboin H. V. The effect of cigarette smoking on 7-ethoxyresorufin O-deethylase and other monooxygenase activities in human liver: analyses with monoclonal antibodies. Br J Clin Pharmacol. 1986 Aug;22(2):125–134. doi: 10.1111/j.1365-2125.1986.tb05239.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Purba H. S., Maggs J. L., Orme M. L., Back D. J., Park B. K. The metabolism of 17 alpha-ethinyloestradiol by human liver microsomes: formation of catechol and chemically reactive metabolites. Br J Clin Pharmacol. 1987 Apr;23(4):447–453. doi: 10.1111/j.1365-2125.1987.tb03074.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ryan D. E., Iida S., Wood A. W., Thomas P. E., Lieber C. S., Levin W. Characterization of three highly purified cytochromes P-450 from hepatic microsomes of adult male rats. J Biol Chem. 1984 Jan 25;259(2):1239–1250. [PubMed] [Google Scholar]
  20. Schuster I. The interaction of representative members from two classes of antimycotics--the azoles and the allylamines--with cytochromes P-450 in steroidogenic tissues and liver. Xenobiotica. 1985 Jun;15(6):529–546. doi: 10.3109/00498258509045027. [DOI] [PubMed] [Google Scholar]
  21. Sheets J. J., Mason J. I. Ketoconazole: a potent inhibitor of cytochrome P-450-dependent drug metabolism in rat liver. Drug Metab Dispos. 1984 Sep-Oct;12(5):603–606. [PubMed] [Google Scholar]
  22. Sheets J. J., Mason J. I., Wise C. A., Estabrook R. W. Inhibition of rat liver microsomal cytochrome P-450 steroid hydroxylase reactions by imidazole antimycotic agents. Biochem Pharmacol. 1986 Feb 1;35(3):487–491. doi: 10.1016/0006-2952(86)90224-8. [DOI] [PubMed] [Google Scholar]
  23. Van den Bossche H., Willemsens G., Cools W., Cornelissen F., Lauwers W. F., van Cutsem J. M. In vitro and in vivo effects of the antimycotic drug ketoconazole on sterol synthesis. Antimicrob Agents Chemother. 1980 Jun;17(6):922–928. doi: 10.1128/aac.17.6.922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. van den Bossche H., Willemsens G., Cools W., Lauwers W. F., Le Jeune L. Biochemical effects of miconazole on fungi. II. Inhibition of ergosterol biosynthesis in Candida albicans. Chem Biol Interact. 1978 Apr;21(1):59–78. doi: 10.1016/0009-2797(78)90068-6. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Clinical Pharmacology are provided here courtesy of British Pharmacological Society

RESOURCES