Skip to main content
British Journal of Clinical Pharmacology logoLink to British Journal of Clinical Pharmacology
. 1992 Oct;34(4):366–369. doi: 10.1111/j.1365-2125.1992.tb05922.x

Effect of alacepril on blood pressure and neurohumoral factors at rest and during dynamic exercise in patients with essential hypertension.

T Kinugawa 1, H Kitamura 1, K Ogino 1, N Noguchi 1, T Matsumoto 1, I Hisatome 1, H Miyakoda 1, H Kotake 1, H Mashiba 1
PMCID: PMC1381422  PMID: 1457272

Abstract

We assessed blood pressure and neurohumoral factors at rest and during exercise in 10 patients with essential hypertension before and after treatment with the new angiotensin converting enzyme inhibitor, alacepril (25-50 mg day-1). Alacepril significantly lowered mean blood pressure at rest and at the same exercise load as before treatment without affecting heart rate response. The response of plasma renin activity, plasma aldosterone, and plasma adrenaline were not changed by alacepril, but increase of plasma angiotensin II and plasma noradrenaline during exercise were significantly attenuated after alacepril treatment (ANOVA, P = 0.04, both). The change in mean blood pressure during exercise was positively correlated with the decrease in plasma angiotensin II (r = 0.65, P < 0.05). These results demonstrated that alacepril was effective in essential hypertension both at rest and during exercise, suggesting that the antihypertensive effect during exercise might be related to the decrease in pressor hormones, especially in plasma angiotensin II.

Full text

PDF
367

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cerasola G., Cottone S., D'Ignoto G., Grasso L., Carone M. B., Carapelle E., Contorno A. Effects of enalapril maleate on blood pressure, renin-angiotensin-aldosterone system, and peripheral sympathetic activity in essential hypertension. Clin Ther. 1987;9(4):390–399. [PubMed] [Google Scholar]
  2. Crozier I. G., Teoh R., Kay R., Nicholls M. G. Sympathetic nervous system during converting enzyme inhibition. Am J Med. 1989 Dec 26;87(6B):29S–32S. doi: 10.1016/0002-9343(89)90088-0. [DOI] [PubMed] [Google Scholar]
  3. Fagard R., Lijnen P., Amery A. Hemodynamic response to captopril at rest and during exercise in hypertensive patients. Am J Cardiol. 1982 Apr 21;49(6):1569–1571. doi: 10.1016/0002-9149(82)90393-9. [DOI] [PubMed] [Google Scholar]
  4. Khairallah P. A. Action of angiotensin on adrenergic nerve endings: inhibition of norepinephrine uptake. Fed Proc. 1972 Jul-Aug;31(4):1351–1357. [PubMed] [Google Scholar]
  5. Matsumoto K., Miyazaki H., Fujii T., Yoshida K., Amejima H., Hashimoto M. Disposition and metabolism of the novel antihypertensive agent alacepril in rats. Arzneimittelforschung. 1986;36(1):40–46. [PubMed] [Google Scholar]
  6. Minato H., Hosoki K., Hayashi K., Sawayama T., Kadokawa T., Hashimoto M. Antihypertensive mechanism of alacepril. Effects of its metabolites on the peripheral sympathetic nervous system. Arzneimittelforschung. 1989 Mar;39(3):319–324. [PubMed] [Google Scholar]
  7. Morimoto T., Aoyama M., Gotoh E., Shionoiri H. [A method for radioimmunoassay of plasma angiotensin II using florisil]. Nihon Naibunpi Gakkai Zasshi. 1983 Mar 20;59(3):215–229. doi: 10.1507/endocrine1927.59.3_215. [DOI] [PubMed] [Google Scholar]
  8. Morioka S., Simon G., Cohn J. N. Cardiac and hormonal effects of enalapril in hypertension. Clin Pharmacol Ther. 1983 Nov;34(5):583–589. doi: 10.1038/clpt.1983.219. [DOI] [PubMed] [Google Scholar]
  9. Ogihara T., Iinuma K., Nishi K., Arakawa Y., Takagi A. A non-chromatographic non-extraction radioimmunoassay for serum aldosterone. J Clin Endocrinol Metab. 1977 Oct;45(4):726–731. doi: 10.1210/jcem-45-4-726. [DOI] [PubMed] [Google Scholar]
  10. Philipp T., Sharma A. M., Thiede H. M., Kribben A. Sympathetic nervous activity and noradrenaline reactivity during angiotensin converting enzyme inhibition. Am J Cardiol. 1987 Apr 24;59(10):55D–59D. doi: 10.1016/0002-9149(87)90054-3. [DOI] [PubMed] [Google Scholar]
  11. Roth R. H. Action of angiotensin on adrenergic nerve endings: enhancement of norepinephrine biosynthesis. Fed Proc. 1972 Jul-Aug;31(4):1358–1364. [PubMed] [Google Scholar]
  12. Takeyama K., Minato H., Fukuya F., Kawahara S., Hosoki K., Kadokawa T. Antihypertensive activity of alacepril in spontaneously hypertensive rats and deoxycorticosterone acetate-salt hypertensive rats and dogs. Arzneimittelforschung. 1985;35(10):1507–1512. [PubMed] [Google Scholar]
  13. Weinberger M. H. Role of sympathetic nervous system activity in the blood pressure response to long-term captopril therapy in severely hypertensive patients. Am J Cardiol. 1982 Apr 21;49(6):1542–1543. doi: 10.1016/0002-9149(82)90383-6. [DOI] [PubMed] [Google Scholar]
  14. Yui Y., Fujita T., Yamamoto T., Itokawa Y., Kawai C. Liquid-chromatographic determination of norepinephrine and epinephrine in human plasma. Clin Chem. 1980 Feb;26(2):194–196. [PubMed] [Google Scholar]
  15. Zimmerman B. G., Gomer S. K., Liao J. C. Action of angiotensin on vascular adrenergic nerve endings: facilitation of norepinephrine release. Fed Proc. 1972 Jul-Aug;31(4):1344–1350. [PubMed] [Google Scholar]

Articles from British Journal of Clinical Pharmacology are provided here courtesy of British Pharmacological Society

RESOURCES