Skip to main content
Immunology logoLink to Immunology
. 1992 Feb;75(2):305–310.

Differential response of human thymus cells to CD2 antibodies: fragmentation of DNA of CD45RO+ and proliferation of CD45RO- subsets.

J Li 1, D Campbell 1, A R Hayward 1
PMCID: PMC1384711  PMID: 1348052

Abstract

Human thymocytes bearing the CD45RO 'memory' cell phenotype do not proliferate in concanavalin A (Con A)-stimulated cultures and may be destined for intrathymic death. To determine whether this subset would exhibit characteristics of programmed cell death (apoptosis), we examined the integrity of the nuclear DNA by gel electrophoresis. DNA fragmentation was restricted to the CD45RO+ subset of human thymocytes following exposure to stimulating concentrations of anti-CD2 antibodies. Both CD45RO- and CD45RO+ subsets mobilized cytoplasmic Ca2+ following cell-surface CD2 ligation, but entry into the cell cycle and vigorous thymidine uptake were restricted to the CD45RO- subset. Our results provide a mechanism which may account for the failure of thymic CD45RO+ cells to respond to stimuli which elicit proliferation by the reciprocal CD45RA+ subset.

Full text

PDF
308

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akbar A. N., Terry L., Timms A., Beverley P. C., Janossy G. Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. J Immunol. 1988 Apr 1;140(7):2171–2178. [PubMed] [Google Scholar]
  2. Arends M. J., Morris R. G., Wyllie A. H. Apoptosis. The role of the endonuclease. Am J Pathol. 1990 Mar;136(3):593–608. [PMC free article] [PubMed] [Google Scholar]
  3. Blue M. L., Daley J. F., Levine H., Craig K. A., Schlossman S. F. Activation of immature cortical thymocytes through the T11 sheep erythrocyte binding protein. J Immunol. 1987 May 15;138(10):3108–3113. [PubMed] [Google Scholar]
  4. Cantrell D. A., Smith K. A. The interleukin-2 T-cell system: a new cell growth model. Science. 1984 Jun 22;224(4655):1312–1316. doi: 10.1126/science.6427923. [DOI] [PubMed] [Google Scholar]
  5. Egerton M., Pruski E., Pilarski L. M. Cell generation within human thymic subsets defined by selective expression of CD45 (T200) isoforms. Hum Immunol. 1990 Apr;27(4):333–347. doi: 10.1016/0198-8859(90)90084-3. [DOI] [PubMed] [Google Scholar]
  6. Egerton M., Scollay R., Shortman K. Kinetics of mature T-cell development in the thymus. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2579–2582. doi: 10.1073/pnas.87.7.2579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fox D. A., Hussey R. E., Fitzgerald K. A., Bensussan A., Daley J. F., Schlossman S. F., Reinherz E. L. Activation of human thymocytes via the 50KD T11 sheep erythrocyte binding protein induces the expression of interleukin 2 receptors on both T3+ and T3- populations. J Immunol. 1985 Jan;134(1):330–335. [PubMed] [Google Scholar]
  8. Hayward A., Laszlo M., Vafai A. Human newborn natural killer cell responses to activation by monoclonal antibodies. Effect of culture with herpes simplex virus. J Immunol. 1989 Feb 15;142(4):1139–1143. [PubMed] [Google Scholar]
  9. Kisielow P., Blüthmann H., Staerz U. D., Steinmetz M., von Boehmer H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature. 1988 Jun 23;333(6175):742–746. doi: 10.1038/333742a0. [DOI] [PubMed] [Google Scholar]
  10. McConkey D. J., Orrenius S., Jondal M. Cellular signalling in programmed cell death (apoptosis). Immunol Today. 1990 Apr;11(4):120–121. doi: 10.1016/0167-5699(90)90048-e. [DOI] [PubMed] [Google Scholar]
  11. Meuer S. C., Hussey R. E., Fabbi M., Fox D., Acuto O., Fitzgerald K. A., Hodgdon J. C., Protentis J. P., Schlossman S. F., Reinherz E. L. An alternative pathway of T-cell activation: a functional role for the 50 kd T11 sheep erythrocyte receptor protein. Cell. 1984 Apr;36(4):897–906. doi: 10.1016/0092-8674(84)90039-4. [DOI] [PubMed] [Google Scholar]
  12. Pilarski L. M., Gillitzer R., Zola H., Shortman K., Scollay R. Definition of the thymic generative lineage by selective expression of high molecular weight isoforms of CD45 (T200). Eur J Immunol. 1989 Apr;19(4):589–597. doi: 10.1002/eji.1830190403. [DOI] [PubMed] [Google Scholar]
  13. Searle J., Kerr J. F., Bishop C. J. Necrosis and apoptosis: distinct modes of cell death with fundamentally different significance. Pathol Annu. 1982;17(Pt 2):229–259. [PubMed] [Google Scholar]
  14. Serra H. M., Krowka J. F., Ledbetter J. A., Pilarski L. M. Loss of CD45R (Lp220) represents a post-thymic T cell differentiation event. J Immunol. 1988 Mar 1;140(5):1435–1441. [PubMed] [Google Scholar]
  15. Woollett G. R., Barclay A. N., Puklavec M., Williams A. F. Molecular and antigenic heterogeneity of the rat leukocyte-common antigen from thymocytes and T and B lymphocytes. Eur J Immunol. 1985 Feb;15(2):168–173. doi: 10.1002/eji.1830150211. [DOI] [PubMed] [Google Scholar]
  16. Wyllie A. H., Kerr J. F., Currie A. R. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251–306. doi: 10.1016/s0074-7696(08)62312-8. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES